精英家教网 > 高中数学 > 题目详情
1.下面是用三段论形式写出的演绎推理,其结论错误的原因是
因为对数函数y=logax(a>0且a≠1)在(0,+∞)上是增函数,…大前提
而y=log${\;}_{\frac{1}{2}}$x是对数函数,…小前提
所以y=log${\;}_{\frac{1}{2}}$x在(0,+∞)上是增函数,…结论.
A.推理形式错误B.小前提错误C.大前提错误D.以上都有可能

分析 对于对数函数来说,底数的范围不同,则函数的增减性不同,当a>1时,函数是一个增函数,当0<a<1时,对数函数是一个减函数,对数函数y=logax(a>0且a≠1)是增函数这个大前提是错误的.

解答 解:∵当a>1时,函数y=logax(a>0且a≠1)是一个增函数,
当0<a<1时,此函数是一个减函数
∴y=logax(a>0且a≠1)是增函数这个大前提是错误的,
从而导致结论错.
故选:C

点评 本题考查演绎推理的基本方法,考查对数函数的单调性,是一个基础题,解题的关键是理解函数的单调性,分析出大前提是错误的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知P是△ABC所在平面内一点,$\overrightarrow{PB}+\overrightarrow{PC}+2\overrightarrow{PA}=\overrightarrow{O}$,则S△ABC:S△PBC=(  )
A.2:1B.4:1C.8:1D.16:1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=ax+3-2(a>0,a≠1)的图象恒过定点A,若点A在直线$\frac{x}{m}$+$\frac{y}{n}$=-1上,且m,n>0,则3m+n的最小值16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx-a(x-1)(其中a>0,e是自然对数的底数).
(1)若x=$\frac{1}{e}$是函数f(x)的一个极值点,求a的值;
(2)若过原点所作曲线y=f(x)的切线l与直线y=-ex+1垂直,证明:$\frac{e-1}{e}<a<\frac{{e}^{2}-1}{e}$;
(3)设g(x)=f(x)+ex-1,当x≥1时,g(x)≥1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=t+3}\\{y=3-t}\end{array}\right.$(参数t∈R),圆C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ+2}\end{array}\right.$(参数θ∈[0,2π)),则圆C的圆心坐标为(0,2),圆心到直线l的距离为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=ex-ax2,曲线y=f(x)在(1,f(1))处的切线方程为y=bx+1.
(1)求a,b的值;
(2)求f(x)在[0,1]上的最大值;
(3)证明:当x>0时,ex+(1-e)x-xlnx-1≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知矩形ABCD的顶点都在半径为R的球O的球面上,且AB=6,BC=2$\sqrt{3}$,棱锥O-ABCD的体积为8$\sqrt{3}$,则R=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=x2e2x的导数是(  )
A.y=(2x2+x2)exB.y=2xe2x+x2exC.y=2xe2x+x2e2xD.y=(2x+2x2)e2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.点P(1,2)到直线l:2x+y+1=0的距离d=$\sqrt{5}$.

查看答案和解析>>

同步练习册答案