| A. | 0 | B. | 1 | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
分析 函数图象平移$\frac{π}{3}$个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,可求ω=6k(k∈N*),利用特殊角的三角函数值即可得解.
解答 解:由题意$\frac{π}{3}=\frac{2π}{ω}•k(k∈{N^*})$,
所以ω=6k(k∈N*),
因此f(x)=cos6kx,
从而$f(\frac{π}{24})=cos\frac{kπ}{4}$,
可知$f(\frac{π}{24})$不可能等于$\frac{{\sqrt{3}}}{2}$.
故选:D.
点评 本题主要考查了三角函数的图象的平移,三角函数的周期定义的理解,考查技术能力,是常考题型,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{6}{7}$,$\frac{12}{13}$) | B. | [-2,$\frac{12}{13}$] | C. | [0,$\frac{12}{13}$] | D. | (-2,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,2] | B. | (-∞,-$\frac{1}{2}$]∪[$\frac{1}{2}$,+∞) | C. | (-∞,-2]∪[2,+∞) | D. | [-$\frac{1}{2}$,$\frac{1}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com