| A. | (-$\frac{6}{7}$,$\frac{12}{13}$) | B. | [-2,$\frac{12}{13}$] | C. | [0,$\frac{12}{13}$] | D. | (-2,2) |
分析 若f(x)=mcos2x+msinx+3是“三角形函数,则$\left\{\begin{array}{l}{f(x)_{min}>0}\\{2f(x)_{min}>f(x){\;}_{max}}\end{array}\right.$,分类讨论,即可求出m的取值范围.
解答 解:若f(x)=mcos2x+msinx+3是“三角形函数,则$\left\{\begin{array}{l}{f(x)_{min}>0}\\{2f(x)_{min}>f(x){\;}_{max}}\end{array}\right.$,
∵f(x)=mcos2x+msinx+3=-m(sinx-$\frac{1}{2}$)2+$\frac{5}{4}$m+3,
当m>0时,f(x)min=f(-1)=-m+3,f(x)max=f($\frac{1}{2}$)=$\frac{5}{4}$m+3,则$\left\{\begin{array}{l}{-m+3>0}\\{\frac{5}{4}m+3<2(-m+3)}\end{array}\right.$,解得0$<m<\frac{12}{13}$,
当m=0时,f(a)=f(b)=f(c)=3,符合题意,
当m<0时,f(x)maxf(-1)=-m+3,f(x)min=f($\frac{1}{2}$)=$\frac{5}{4}$m+3,则$\left\{\begin{array}{l}{\frac{5}{4}m+3>0}\\{2(\frac{5}{4}m+3)>-m+3}\end{array}\right.$,解得-$\frac{6}{7}$<m<0,
综上所述m的取值范围为(-$\frac{6}{7}$,$\frac{12}{13}$),
故选:A.
点评 本题考查函数的最值和分类讨论思想,属于中档题;解决本题的关键是根据三角形的三边关系得到“三角形函数”满足的条件[-1,1],这也是本题的难点;对于“a”的情况容易忽视.
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}i$ | B. | $\frac{1}{2}i$ | C. | $-\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1<a<1 | B. | a≤-$\frac{3}{5}$或a≥1 | C. | -1<a≤-$\frac{3}{5}$ | D. | -$\frac{3}{5}$≤a<1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com