精英家教网 > 高中数学 > 题目详情
16.$\frac{{{{(1+i)}^2}}}{{{{(1-i)}^3}}}$=(  )
A.-$\frac{1}{2}$-$\frac{i}{2}$B.-$\frac{1}{2}$+$\frac{i}{2}$C.$\frac{1}{2}$-$\frac{i}{2}$D.$\frac{1}{2}$+$\frac{i}{2}$

分析 直接由复数代数形式的乘除运算化简得答案.

解答 解:$\frac{{{{({1+i})}^2}}}{{{{({1-i})}^3}}}=\frac{2i}{{-2i({1-i})}}=\frac{2i}{-2-2i}=-\frac{i}{1+i}=-\frac{{i({1-i})}}{2}=-\frac{1}{2}-\frac{i}{2}$,
故选:A.

点评 本题考查了复数代数形式的乘除运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.y=x2与y=x所围成的面积为(  )
A.1B.-$\frac{1}{2}$C.$\frac{1}{6}$D.$-\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列函数的反函数.
(1)y=cosx,x∈[-$\frac{1}{2}$π,0];
(2)y=cosx,x∈[-π,0];
(3)y=cos(2x-$\frac{π}{3}$),x∈[$\frac{π}{4}$,$\frac{2π}{3}$];
(4)y=arccos(x+1),x∈[-2,0];
(5)y=$\frac{π}{2}$+arccos$\frac{x}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求函数y=cos2x+sinx.(1)x∈R.(2)-$\frac{π}{4}$≤x≤$\frac{π}{4}$的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=|log3x|,若存在两个不同的实数a,b满足f(a)=f(b),则ab=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知不等式组$\left\{{\begin{array}{l}{x+y≤1}\\{x-y≥-1}\\{y≥0}\end{array}}\right.$,所表示的平面区域为D,若直线y=ax-2与平面区域D有公共点,则实数a的取值范围为(  )
A.[-2,2]B.(-∞,-$\frac{1}{2}$]∪[$\frac{1}{2}$,+∞)C.(-∞,-2]∪[2,+∞)D.[-$\frac{1}{2}$,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若集合A={1,2,3},B={(x,y)|x+y-4>0,x,y∈A},则集合B中的元素个数为(  )
A.9B.6C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=x2+2x-a,若方程f(f(x))=0有两个不等的实数解,则a的取值范围是$\frac{1-\sqrt{5}}{2}$<a<$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知P是△ABC所在平面内一点,$\overrightarrow{PB}+\overrightarrow{PC}+2\overrightarrow{PA}=\overrightarrow{O}$,则S△ABC:S△PBC=(  )
A.2:1B.4:1C.8:1D.16:1

查看答案和解析>>

同步练习册答案