精英家教网 > 高中数学 > 题目详情
6.y=x2与y=x所围成的面积为(  )
A.1B.-$\frac{1}{2}$C.$\frac{1}{6}$D.$-\frac{1}{6}$

分析 作出两个曲线的图象,求出它们的交点,由此可得所求面积为函数x-x2在区间[0,1]上的定积分的值,再用定积分计算公式加以计算,即可得到本题答案.

解答 解:∵曲线y=x3和曲线y=x的交点为A(1,1)和原点O(0,0)
∴由定积分的几何意义,可得所求图形的面积为
S=${∫}_{0}^{1}(x-{x}^{2})dx$=$(\frac{1}{2}{x}^{2}-\frac{1}{3}{x}^{3}){|}_{0}^{1}$=$\frac{1}{2}-\frac{1}{3}$=$\frac{1}{6}$.
故选:C.

点评 本题求两条曲线围成的曲边图形的面积,着重考查了定积分的几何意义和积分计算公式等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知三棱柱ABC-A1B1C1的底面为等腰三角形,且平面B1BCC1⊥平面ABC,C1B⊥BC,M是线段AB上的点,且∠ACM=∠BCM=60°,CA=CB=$\frac{{\sqrt{3}}}{3}$C1B.
(Ⅰ)求证:CM⊥AC1
(Ⅱ)求直线CC1与平面B1CM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设计一个计算1×3×5×7×…×199的算法,并写出程序,画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.欧拉公式eθi=cosθ+isinθ(e为自然对数的底数,i为虚数单位)是瑞士著名数学家欧拉发明的,根据欧拉公式可知,复数${e^{\frac{π}{6}i}}$的虚部为(  )
A.$-\frac{1}{2}i$B.$\frac{1}{2}i$C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左焦点为F(-c,0),其上顶点为B(0,b),直线BF与椭圆的交点为A,点A关于x轴的对称点为C
(Ⅰ)若点C的坐标为$(-\frac{3}{2},\frac{{\sqrt{2}}}{2})$,且c=1,求椭圆的方程.
(Ⅱ)设点O为原点,若直线OC恰好平分线段AB,求椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.$\int_0^{\frac{π}{2}}{{2sin}^2}{xdx=}_{\;}$$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知一元二次方程x2+(a-1)x+1-a2=0的两根都大于0,则a的取值范围是(  )
A.-1<a<1B.a≤-$\frac{3}{5}$或a≥1C.-1<a≤-$\frac{3}{5}$D.-$\frac{3}{5}$≤a<1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.一切奇数都不能被2整除,2100+1是奇数,所以2100+1不能被2整除,其演绎推理的“三段论”的形式为一切奇数都不能被2整除,大前提,2100+1是奇数,小前提,所以2100+1不能被2整除.结论,.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.$\frac{{{{(1+i)}^2}}}{{{{(1-i)}^3}}}$=(  )
A.-$\frac{1}{2}$-$\frac{i}{2}$B.-$\frac{1}{2}$+$\frac{i}{2}$C.$\frac{1}{2}$-$\frac{i}{2}$D.$\frac{1}{2}$+$\frac{i}{2}$

查看答案和解析>>

同步练习册答案