精英家教网 > 高中数学 > 题目详情
请考生在下列两题中任选一题作答,如果多做,则按所做的第一题记分.
(1)极坐标系中,曲线ρ=10cosθ和直线3ρcosθ-4ρsinθ-30=0交于A、B两点,则线段AB的长=______.
(2)已知函数f(x)=|x-2|-|x-5|,则f(x)的取值范围是______.
(1)极坐标系中,曲线ρ=10cosθ 即ρ2=10ρcosθ,即 x2+y2=10x,即 (x-5)2+y2=25,表示以(5,0)为圆心,以r=5为半径的圆.
直线3ρcosθ-4ρsinθ-30=0 即 3x-4y-30=0,圆心到直线的距离d=
|15-0-30|
9+16
=3,∴AB=2
r2- d2
=8,
故答案为 8.
(2)已知函数f(x)=|x-2|-|x-5|,表示数轴上的x对应点到2对应点的距离减去 它到5对应点的距离,
故函数的最大值为3,最小值为-3,
故函数的值域为[-3,3],
故答案为[-3,3].
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选做题:请考生在下列两题中任选一题作答,若两题都做,则按所做的第一题评阅计分.
(1)(几何证明选讲选做题) 如图,平行四边形ABCD的对角线AC和BD交于点O,OE与BC和AB的延长线分别交于点E和F,若AB=2,BC=3,BF=1,则BE=
3
4
3
4

(2)(坐标系与参数方程选做题) 若直线l1
x=1-2t
y=2+kt.
(t为参数)

与直线l2
x=s
y=1-2s.
(s为参数)垂直,则k=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题:请考生在下列两题中任选一题作答,若两题都做,则按所做的第一题评阅计分.
(1)(几何证明选讲选做题) PA与圆O切于A点,PCB为圆O的割线,且不过圆心O,已知∠BPA=30°,PA=2
3
,PC=1,则圆O的半径等于
7
7

(2)(坐标系与参数方程选做题) 在极坐标系中,过点(2
2
,  
π
4
)作圆ρ=4sinθ的切线,则切线的极坐标方程是
ρcosθ=2
ρcosθ=2

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题(请考生在下列两题中任选一题作答,若两题都做,则按所做的第一题评阅计分)
(1)已知圆的极坐标方程为ρ=2cosθ,则该圆的圆心到直线ρsinθ+2ρcosθ=1的距离是
5
5
5
5

(2)若关于x的不等式|a-1|+2≥|x+1|+|x-3|存在实数解,则实数a的取值范围是
(-∞,-1]∪[3,+∞)
(-∞,-1]∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题:请考生在下列两题中任选一题作答.若两题都做,则按做的第一题评阅计分.本题共5分.
(1)(不等式选讲)若实数x、y满足|x|+|y|≤1,则x2-xy+y2的最大值为
1
1

(2)(坐标系与参数方程)若直线
x=1-2t
y=2+3t
(t为参数)与直线4x+ky=1垂直,则常数k=
-6
-6

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题(请考生在下列两题中任选一题作答,若两题都做,则按做的第一题评阅计分)
(1)(极坐标与参数方程)在直角坐标系xOy中,圆C的参数方程为
x=-
2
+rcosθ
y=-
2
+rsinθ
(θ为参数,r>0).以O为极点,x轴正半轴为极轴,并取相同的单位长度建立极坐标系,直线l的极坐标方程为ρsin(θ+
π
4
)=1
.当圆C上的点到直线l的最大距离为4时,圆的半径r=
1
1

(2)(不等式)对于任意实数x,不等式|2x+m|+|x-1|≥a恒成立时,若实数a的最大值为3,则实数m的值为
4或-8
4或-8

查看答案和解析>>

同步练习册答案