精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCDPDDCEPC的中点.

(1)证明:PA∥平面BDE
(2)求二面角B-DE-C的余弦值.
(1)见解析(2)
(1)连接ACBD于点O,连接OE;在△CPA中,EO分别是边CPCA的中点,∴OEPA,而OE?平面BDEPA?平面BDE,∴PA∥平面BDE.
(2)如图建立空间直角坐标系,设PDDC=2.

A(2,0,0),P(0,0,2),E(0,1,1),
B(2,2,0),=(0,1,1),=(2,2,0).,
n=(xyz)是平面BDE的一个法向量,则由
y=-1,得n=(1,-1,1),又=(2,0,0)是平面DEC的一个法向量.
∴cos〈n〉=.
故结合图形知二面角B-DE-C的余弦值为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥PABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,ABADABCDAB=2AD=2CD=2,EPB的中点.
 
(1)求证:平面EAC⊥平面PBC
(2)若二面角PACE的余弦值为,求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正三棱柱ABC-A1B1C1中,AB=2,AA1,点DAC的中点,点E在线段AA1上.

(1)当AEEA1=1∶2时,求证DEBC1
(2)是否存在点E,使二面角D-BE-A等于60°,若存在求AE的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以下四组向量:
a
=(1,-2,1)
b
=(-1,2,-1)

a
=(8,4,0)
b
=(2,1,0)

a
=(1,0,-1)
b
=(-3,0,3)

a
=(-
4
3
,1,-1)
b
=(4,-3,3)

其中互相平行的是(  )
A.②③B.①④C.①②④D.①②③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,在直三棱柱ABCA1B1C1中,底面是∠ABC为直角的等腰直角三角形,AC=2aBB1=3aDA1C1的中点,点F在线段AA1上,当AF=________时,CF⊥平面B1DF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线的法向量为,则该直线的倾斜角为        .(用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知等差数列的前n项和为,且,则过点的直线的一个方向向量的坐标可以是(    )
A.B.(2,4)C.D.(-1,-1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理)如图,P—ABCD是正四棱锥,是正方体,其中

(1)求证:
(2)求平面PAD与平面所成的锐二面角的余弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知向量=(-3,4),则与同向的单位向量 =         。 

查看答案和解析>>

同步练习册答案