精英家教网 > 高中数学 > 题目详情
19.△ABC中,内角A,B,C的对边是a,b,c,b2+c2=10a2,且sinB=$\sqrt{3}$sinA,则角C=(  )
A.30°B.60°C.150°D.120°

分析 由已知及正弦定理可得b=$\sqrt{3}a$,结合已知等式可得c=$\sqrt{7}$a,利用余弦定理可求cosC的值,结合范围C∈(0,180°),即可得解C的值.

解答 解:∵sinB=$\sqrt{3}$sinA,
∴由正弦定理可得:b=$\sqrt{3}a$,
∵b2+c2=10a2,可得:c=$\sqrt{7}$a,
∴由余弦定理可得:cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{{a}^{2}+3{a}^{2}-7{a}^{2}}{2×a×\sqrt{3}a}$=-$\frac{\sqrt{3}}{2}$,
∵C∈(0°,180°),
∴C=150°.
故选:C.

点评 本题主要考查了正弦定理,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.2$\sqrt{2}$-$\sqrt{7}$<$\sqrt{6}$-$\sqrt{5}$.(请在横线上填“<”,”>”或“=”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=sin(x+$\frac{π}{6}$)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到图象C1,再把图象C1向右平移$\frac{π}{6}$个单位,得到图象C2,则图象C2对应的函数表达式为(  )
A.y=sin2xB.y=sin($\frac{1}{2}$x+$\frac{π}{4}$)C.y=sin$\frac{1}{2}$xD.y=sin($\frac{1}{2}$x+$\frac{π}{12}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.△ABC中,角A、B、C所对的边分别为a、b、c,角A为锐角,且$\frac{sin2A}{tanA}=\frac{{2{b^2}}}{c^2}$.
(1)求角C的大小;
(2)求sinA+sinB的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在边长为10的等边三角形ABC中,两个内接正方形有一边重叠,都有边落在BC上,正方形甲有一个顶点在AB上,正方形乙有一顶点在AC上,求这两个内接正方形面积和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.抛物线y2=2px(p>0)有一内接正三角形,且三角形的一个顶点在原点,则这个正三角形的边长为4$\sqrt{3}$p,正三角形的面积为12$\sqrt{3}$p2,中心坐标为($\frac{2}{3}$a,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.从25名男生l5名女生中选3名男生,2名女生分别担任五种不同的职务,共有种不同的结果$C_{25}^3C_{15}^2A_5^5$.(只要列出式子)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.经过点(2,0)且斜率为3的直线方程是(  )
A.3x-y+6=0B.3x+y-6=0C.3x-y-6=0D.3x+y+6=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数中,最小值为4的是(  )
A.y=x+$\frac{4}{x}$B.y=sinx+$\frac{4}{sinx}$(0<x<π)
C.y=ex+4e-xD.y=$\sqrt{{x}^{2}+3}$+$\frac{2}{\sqrt{{x}^{2}+3}}$

查看答案和解析>>

同步练习册答案