精英家教网 > 高中数学 > 题目详情
已知f(x)=试讨论x→0时,f(x)的极限.

解:f(x)=(ax+b)=b,f(x)=a.

(1)当a≠b时,f(x)不存在;

(2)当a=b时,f(x)=f(x),此时f(x)=a=b.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=2x2+bx+c,不等式f(x)<0的解集是(0,5).
(1).求f(x)的解析式;
(2).已知g(x)=f(x)+mx-6,求当m为何值时,g(x)为偶函数.
(3).若g(x)=f(x)+mx-6在[1,2]上最小值为h(m),试讨论h(m)-k=0的零点个数.(k为常数).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P(x,y)为函数y=lnx图象上一点,O为坐标原点,记直线OP的斜率f(x).
(Ⅰ)求f(x)的最大值;
(Ⅱ)令g(x)=x2-ax•f(x),试讨论函数g(x)在区间(1,ea)上零点的个数(e为自然对数的底数,e=2.71828…).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=2x2+bx+c,不等式f(x)<0的解集是(0,5).
(1).求f(x)的解析式;
(2).已知g(x)=f(x)+mx-6,求当m为何值时,g(x)为偶函数.
(3).若g(x)=f(x)+mx-6在[1,2]上最小值为h(m),试讨论h(m)-k=0的零点个数.(k为常数).

查看答案和解析>>

科目:高中数学 来源:2008-2009学年浙江省台州市高二(下)期末数学试卷(理科)(解析版) 题型:解答题

已知P(x,y)为函数y=lnx图象上一点,O为坐标原点,记直线OP的斜率f(x).
(Ⅰ)求f(x)的最大值;
(Ⅱ)令g(x)=x2-ax•f(x),试讨论函数g(x)在区间(1,ea)上零点的个数(e为自然对数的底数,e=2.71828…).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知P(x,y)为函数y=lnx图象上一点,O为坐标原点,记直线OP的斜率f(x).
(Ⅰ)求f(x)的最大值;
(Ⅱ)令g(x)=x2-ax•f(x),试讨论函数g(x)在区间(1,ea)上零点的个数(e为自然对数的底数,e=2.71828…).

查看答案和解析>>

同步练习册答案