精英家教网 > 高中数学 > 题目详情
偶函数f(x)在[0,a](a>0)上是连续的单调函数,且f(0)f(a)<0,则f(x)=0在[-a,a]内根的个数是(  )
分析:由条件f(0)•f(a)<0可知,f(x)在(0,a)上有至少一个零点,根据函数在(0,a)上是连续的单调函数,可得数在(0,a)有且只有一个零点,结合函数为偶函数,即可得出答案.
解答:解:由二分法和函数的单调性可知:函数在区间[0,a]上有且只有一个零点,设为x=x0
∵函数是偶函数,∴f(-x0)=f(x0)=0
故其在对称区间[-a,0]上也有唯一零点,
即函数在区间[-a,a]上存在两个零点,
故选B.
点评:本题主要考查了函数零点的判定定理,灵活运用单调性和奇偶性以及函数的图象是解题的关键,属于基础题..
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义域为R的偶函数f(x)在[0,+∞)上是增函数,且f(
1
2
)=0
,则不等式f(log4x)>0的解集是
(  )
A、x|x>2
B、{x|0<x<
1
2
}
C、{x|0<x<
1
2
或x>2}
D、{x|
1
2
<x<1或x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:

5、已知偶函数f(x)在[0,+∞)上是减函数,则f(1)和f(-10)的大小关系为
f(1)>f(-10)

查看答案和解析>>

科目:高中数学 来源: 题型:

偶函数f(x)在[0,+∞)上为增函数,若不等式f(ax-1)<f(2+x2)恒成立,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•虹口区一模)偶函数f(x)在[0,+∞)上单调递增,则满足不等式f(2x-1)≤f(3)的x取值范围是
{x|-1≤x≤2}
{x|-1≤x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:

若偶函数f(x)在[0,2]上单调递增则(  )
A、f(-1)>f(log0.5
1
4
)>f(lg0.5)
B、f(lg0.5)>f(-1)>f(log0.5
1
4
)
C、f(log0.5
1
4
)>f(-1)>f(lg0.5)
D、f(lg0.5)>f(log0.5
1
4
)>f(-1)

查看答案和解析>>

同步练习册答案