精英家教网 > 高中数学 > 题目详情
已知a>0,b>0,,证明
b2
a
+
a2
b
≥a+b.
分析:首先分析题目是求证不等式
b2
a
+
a2
b
≥a+b
,可以考虑到把它们都移到一边去,然后提取公因子再根据取值范围a>0,b>0,证明不等式成立.
解答:证明:要证
b2
a
+
a2
b
≥a+b
;因为a>0,b>0,所以ab>0,
即证:b3+a3≥a2b+ab2
所以b3+a3-a2b-ab2=a2(a-b)+b2(b-a)=(a-b)(a2-b2)=(a-b)2(a+b)≥0
当且仅当a=b时候等号成立,所以原不等式成立,
故得证.
点评:此题主要考查不等式的证明问题,一般步骤移项提取公因式求解,考查知识点少,计算量小属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0,b>0,且ab=1,α=a+
4
a
,β=b+
4
b
,则α+β的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)在平面直角坐标系xOy中,判断曲线C:
x=2cosθ
y=sinθ
(θ为参数)与直线l:
x=1+2t
y=1-t
(t为参数)是否有公共点,并证明你的结论.
(2)已知a>0,b>0,a+b=1,求证:
1
2a+1
+
4
2b+1
9
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)已知双曲线C的中心在原点,D(1,0)是它的一个顶点,
d
=(1,
2
)
是它的一条渐近线的一个方向向量.
(1)求双曲线C的方程;
(2)若过点(-3,0)任意作一条直线与双曲线C交于A,B两点 (A,B都不同于点D),求证:
DA
DB
为定值;
(3)对于双曲线Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E为它的右顶点,M,N为双曲线Γ上的两点(都不同于点E),且EM⊥EN,那么直线MN是否过定点?若是,请求出此定点的坐标;若不是,说明理由.然后在以下三个情形中选择一个,写出类似结论(不要求书写求解或证明过程).
情形一:双曲线
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左顶点;
情形二:抛物线y2=2px(p>0)及它的顶点;
情形三:椭圆
x2
a2
+
y2
b2
=1(a>b>0)
及它的顶点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,b>0,a+b=1,则a+
1
a
+b+
1
b
的最小值为
5
5

查看答案和解析>>

科目:高中数学 来源:松江区二模 题型:解答题

已知双曲线C的中心在原点,D(1,0)是它的一个顶点,
d
=(1,
2
)
是它的一条渐近线的一个方向向量.
(1)求双曲线C的方程;
(2)若过点(-3,0)任意作一条直线与双曲线C交于A,B两点 (A,B都不同于点D),求证:
DA
DB
为定值;
(3)对于双曲线Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E为它的右顶点,M,N为双曲线Γ上的两点(都不同于点E),且EM⊥EN,那么直线MN是否过定点?若是,请求出此定点的坐标;若不是,说明理由.然后在以下三个情形中选择一个,写出类似结论(不要求书写求解或证明过程).
情形一:双曲线
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左顶点;
情形二:抛物线y2=2px(p>0)及它的顶点;
情形三:椭圆
x2
a2
+
y2
b2
=1(a>b>0)
及它的顶点.

查看答案和解析>>

同步练习册答案