精英家教网 > 高中数学 > 题目详情
(1)在平面直角坐标系xOy中,判断曲线C:
x=2cosθ
y=sinθ
(θ为参数)与直线l:
x=1+2t
y=1-t
(t为参数)是否有公共点,并证明你的结论.
(2)已知a>0,b>0,a+b=1,求证:
1
2a+1
+
4
2b+1
9
4
分析:(1)将参数方程化为普通方程,再将直线方程代入椭圆方程,利用方程的判别式,可得结论;
(2)证法一:因为a>0,b>0,a+b=1,所以(
1
2a+1
+
4
2b+1
)[(2a+1)+(2b+1)],再利用基本不等式,可得结论;
证法二:因为a>0,b>0,(
1
2a+1
+
4
2b+1
)[(2a+1)+(2b+1)],由柯西不等式可证结论.
解答:(1)解:直线l的普通方程为x+2y-3=0.                 …(3分)
曲线C的普通方程为x2+4y2=4.                     …(3分)
由方程组
x+2y-3=0
x2+4y2=4
得8y2-12y+5=0
因为△=-16<0,所以曲线C与直线l没有公共点.       …(4分)
(2)证法一:因为a>0,b>0,a+b=1,
所以(
1
2a+1
+
4
2b+1
)[(2a+1)+(2b+1)]
=1+4+
2b+1
2a+1
+
4(2a+1)
2b+1
          …(5分)
≥5+2
2b+1
2a+1
×
4(2a+1)
2b+1
=9.   …(3分)
而(2a+1)+(2b+1)=4,所以
1
2a+1
+
4
2b+1
9
4
. …(2分)
证法二:因为a>0,b>0,由柯西不等式得
1
2a+1
+
4
2b+1
)[(2a+1)+(2b+1)]…(5分)
≥(
1
2a+1
×(2a+1)
+
4
2b+1
×(2b+1)
2=(1+2)2=9.                  …(3分)
由a+b=1,得 (2a+1)+(2b+1)=4,
所以
1
2a+1
+
4
2b+1
9
4
.                       …(2分)
点评:本题考查参数方程,考查不等式的证明,解题的关键是化参数方程为普通方程,正确运用基本不等式与柯西不等式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标中,由
x≥0
x+y+1≥0
2x+y-3≤0
所确定的平面区域的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标中,x,y满足不等式组
x>0
y≤1
2x-2y+1≥0
点P(x,y)所组成平面区域为F,则A(1,0),B(0,-2),C(-1,
1
2
)
三点中,在F内的所有点是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标上有一点列P1(x1,y1),P2(x2,y2)…,Pn(xn,yn)…,对一切正整数n,点Pn在函数
y=3x+
13
4
的图象上,且Pn的横坐标构成以-
5
2
为首项,-1为公差的等差数列{xn}.
(Ⅰ)求点Pn的坐标;
(Ⅱ)设抛物线列C1,C2,C3,…Cn,…中的每一条的对称轴都垂直于x轴,抛物线Cn的顶点为Pn,且过点Dn(0,n2+1),记与抛物线Cn相切于点Dn的直线的斜率为Kn,求
1
k1k2
+
1
k2k3
+…+
1
knkn+1
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标中,h为坐标原点,设向量
OA
=
a
OB
=
b
,其中
a
=(3,1),
b
=(1,3),若
OC
a
b
,且0≤λ≤μ≤1,C点所有可能的位置区域用阴影表示正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南通二模)选修4-4:坐标系与参数方程
在平面直角坐标xOy中,已知圆C1x2+y2=4,圆C2:(x-2)2+y2=4
(1)在以O为极点,x轴正半轴为极轴的极坐标系中,分别求圆C1,C2的极坐标方程及这两个圆的交点的极坐标;
(2)求圆C1与C2的公共弦的参数方程.

查看答案和解析>>

同步练习册答案