精英家教网 > 高中数学 > 题目详情
若函数f(x),g(x)分别是定义在R上的奇函数,则有(  )
A、f(0)=g(0)
B、f(0)>g(0)
C、f(0)<g(0)
D、无法比较
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:根据奇函数的性质:f(0)=0,即可得到正确答案.
解答: 解:因为函数f(x),g(x)分别是定义在R上的奇函数,
所以f(0)=0,g(0)=0,则f(0)=g(0),
故选:A.
点评:本题考查函数奇偶性的性质的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1
,则函数定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

长方形OABC各点的坐标如图所示,D为OA的中点,由D点发出的一束光线,入射到边AB上的点E处,经AB、BC、CO一次反射后恰好经过点A,则入射光线DE所在的直线斜率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足约束条件
y≥x
x+y≤4
2x-y≥k
,且z=x+2y有最大值8,则实数k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)是定义在R上的奇函数,且当x∈(0,1)时,f(x)=
2x
4x+1

(1)求y=f(x)在(-1,1)上的解析式;
(2)证明:y=f(x)在(0,1)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg((x-1)|ax-1|),
(a∈R)在其定义域上为单调函数,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是双曲线
x2
16
-
y2
9
=1的左右焦点,A是双曲线右支上的动点.
(1)若点M(5,1)求|AM|+|AF2|的最小值;
(2)若点M(5,n)求|AM|+|AF2|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次考试中,5名同学数学、物理成绩如表所示:
学生ABCDE
数学(x分)8991939597
物理(y分)8789899293
(1)根据表中数据,求物理分y对数学分x的回归方程:
(2)要从4名数学成绩在90分以上的同学中选出2名参加一项活动,以X表示选中的同学中物理成绩高于90分的人数,求随机变量X的分布列及数学期望E(X).( 附:回归方程
?
y
=
?
b
x+
?
a
中,
?
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
?
a
=
.
y
-
?
b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程
|x|
x+4
=kx2有3个不同的实数解,则k的取值范围是
 

查看答案和解析>>

同步练习册答案