精英家教网 > 高中数学 > 题目详情

(本小题满分14分)设函数),

(Ⅰ)令,讨论的单调性;

(Ⅱ)关于的不等式的解集中的整数恰有3个,求实数的取值范围;

(Ⅲ)对于函数定义域上的任意实数,若存在常数,使得都成立,则称直线为函数的“分界线”.设,试探究是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

 

【答案】

(Ⅰ)函数上是单调递减;在上是单调递增.

(2)(3)

【解析】

试题分析:(I)直接求导,利用得到F(x)的单调增(减)区间;

(II)不等式的解集中的整数恰有3个,等价于恰有三个整数解,故,令,因为h(x)的一个零点区间为(0,1),

所以得到另一个零点一定在区间,故,问题到此得解.

(III)由(I)知可知F(x)的最小值为0,则f(x)与g(x)的图像在处有公共点.

如果f(x)与g(x)存在分界线,因为方程,所以由题意可转化为恒成立问题解决.

(Ⅰ)由得:

················· 1分

①当时,,则函数上是单调递增;····· 3分

②当时,则当时,, 当时,

故函数上是单调递减;在上是单调递增. ···· 5分

(Ⅱ)解法一:不等式的解集中的整数恰有3个,

等价于恰有三个整数解,故

,由

所以函数的一个零点在区间

则另一个零点一定在区间,故   解之得.··· 9分

下面证明恒成立.

,则

所以当时,;当时,

因此取得最大值,则成立.

故所求“分界线”方程为:.      …………14分

考点: 利用导数研究函数的单调性,函数的最值,函数的零点,不等式恒成立问题,分析问题解决问题的能力,推理与论证能力.

点评:本题综合性难度大,第(II)问的关键是构造之后,判定一个零点在区间(0,1),另一个零点,从而问题得解.

第(III)问关键是理解f(x)与g(x)存在分界线,因为方程,题目可转化为恒成立问题解决.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案