精英家教网 > 高中数学 > 题目详情
已知p:?x∈R,mx2+2≤0,q:?x∈R,x2-2mx+1>0,若p∨q为假命题,则实数m的取值范围是(  )
分析:已知p:?x∈R,mx2+2≤0,q:?x∈R,x2-2mx+1>0,分别解出命题p和q,根据p∨q为假命题,分类进行求解;
解答:解:∵p:?x∈R,mx2+2≤0,
∴m<0,
∵q:?x∈R,x2-2mx+1>0,
∴△=4m2-4<0,
∴-1<m<1,
∵p∨q为假命题,
∴p为假命题,q也为假命题,
∵p为假命题,则m≥0,
q为假命题,则m≥1或m≤-1,
∴实数m的取值范围是m≥1,即[1,+∞)
故选A.
点评:复合命题的真假与构成其简单命题的真假的关系是解决复合命题真假的依据:p且q的真假,当p,q全真则真,有假则假;p或q的真假,p,q中有真则真,全假则假;非p的真假与p的真假相反.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知p:?x∈R,sinx+cosx>m,q:?x∈R,x2+m+1<0.若p∨q为真,p∧q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:?x∈R,m<x2+
1x2
恒成立;q:方程4x2+4(m-2)x+1=0无实根,若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:?x∈R,mx2+1≤0,q:?x∈R,x2+mx+1>0,若pVq为假命题,则实数m的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:?x∈R,cosx>m;q:?x∈R,x2+mx+1<0.若p∨q为真,p∧q为假,则实数m的取值范围是
-2≤m<-1,或m>2
-2≤m<-1,或m>2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知p:?x∈R,m<x2+
1
x2
恒成立;q:方程4x2+4(m-2)x+1=0无实根,若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案