精英家教网 > 高中数学 > 题目详情

已知函数,函数

⑴函数处的切线与平行 ,求的值; (6分)

⑵在⑴的条件下,求直线与函数的图象所围成图形的面积.

 

【答案】

解:⑴∵;,;    ∴函数.------------2分

∵,,    ∴由条件得          ∴.- -----6分

⑵由解得------------8分

∴直线与函数的图象所围成图形的面积:

=------------12分

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-4ax+2a+6(a∈R).
(1)若函数的值域为[0,+∞),求a的值;
(2)若函数值为非负数,求函数f(a)=2-a|a+3|的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=[x]的函数值表示不超过x的最大整数,例如:[-3.5]=-4,[2.7]=2
(1)如果实数a满足[2a+3]=3,且[3a-1]=-1,求实数a的取值范围;
(2)如果函数g(x)=x-f(x),它的定义域为(-1,3)
①求g(-0.4)和g(2.2)的值;
②试用分段函数的形式写出函数g(x)的解析式,并作出函数g(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x2-3x+3)ex,x∈[-2,t](t>-2)
(1)当t<l时,求函数f(x)的单调区间;
(2)比较f(-2)与f (t)的大小,并加以证明;
(3)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间,设g(x)=f(x)+(x-2)ex,试问函数g(x)在(1,+∞)上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)(x∈R)的一段图象如图所示,f′(x)是函f(x)(数的导函数,且y=f(x+1)是奇函数,给出以下结论:
①f(1-x)+f(1+x)=0;
②f′(x)(x-1)≥0;
③f(x)(x-1)≥0;
④f(x)+f(-x)=0
其中一定正确的是(  )

查看答案和解析>>

科目:高中数学 来源:2015届吉林省高一第一次月考数学试卷(解析版) 题型:解答题

(本小题满分12分)

已知全集,函数合,函的定义域为集数的定义域为集合.

 ⑴求集合和集合

 ⑵求集合

 

查看答案和解析>>

同步练习册答案