【题目】已知函数f(x)的定义域为R,且f(2)=2,又函数f(x)的导函数y=f′(x)的图象如图所示,若两个正数a、b满足f(2a+b)<2,则
的取值范围是( ) ![]()
A.(
,2)
B.(﹣∞,
)∪(2,+∞)
C.(2,+∞)
D.(﹣∞,
)
【答案】A
【解析】解:由图可知,当x>0时,导函数f'(x)>0,原函数单调递增, ∵两正数a,b满足f(2a+b)<2,
又由f(2)=2,即f(2a+b)<2,
即2a+b<2,
又由a>0.b>0;
故a,b所对应的平面区域如下图所示:![]()
表示动点(a,b)与定点(﹣2,﹣2)连线的斜率,
当直线过(1,0)点时,
=
,
当直线过(0,2)点时,
=2,
故
∈(
,2),
故选:A.
【考点精析】本题主要考查了利用导数研究函数的单调性的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间
内,(1)如果
,那么函数
在这个区间单调递增;(2)如果
,那么函数
在这个区间单调递减才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】某工厂今年1月、2月、3月生产某产品分别为1万件、1.2万件、1.3万件,为了估计以后每月的产量,以这三个月的产量为依据,用一个函数模拟该产品的月产量,
与月份
的关系,模拟函数可以选用二次函数或函数
、
、
为常数)已知四月份该产品的产量为1.37万件,请问用以上哪个函数作模拟函数较好?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线
的极坐标方程是
,以极点为原点,极轴为
轴的正半轴建立平面直角坐标系,直线
的参数方程为
(
为参数).
(I)写出直线
的一般方程与曲线
的直角坐标方程,并判断它们的位置关系;
(II)将曲线
向左平移
个单位长度,向上平移
个单位长度,得到曲线
,设曲线
经过伸缩变换
得到曲线
,设曲线
上任一点为
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年2月22日,在韩国平昌冬奥会短道速滑男子500米比赛中,中国选手武大靖以连续打破世界纪录的优异表现,为中国代表队夺得了本届冬奥会的首枚金牌,也创造中国男子冰上竞速项目在冬奥会金牌零的突破.某高校为调查该校学生在冬奥会期间累计观看冬奥会的时间情况,收集了200位男生、100位女生累计观看冬奥会时间的样本数据(单位:小时).又在100位女生中随机抽取20个人,已知这20位女生的数据茎叶图如图所示.
![]()
(I)将这20位女生的时间数据分成8组,分组区间分别为![]()
,
,…,
,![]()
,完成频率分布直方图;
(II)以(I)中的频率作为概率,求1名女生观看冬奥会时间不少于30小时的概率;(III)以(I)中的频率估计100位女生中累计观看时间小于20个小时的人数,已知200位男生中累计观看时间小于20小时的男生有50人.请完成下面的列联表,并判断是否有99%的把握认为“该校学生观看冬奥会累计时间与性别有关”.
男生 | 女生 |
| |
累计观看时间小于20小时 | |||
累计观看时间小于20小时 | |||
总计 | 300 |
附:(![]()
).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
,
是经过小城
的东西方向与南北方向的两条公路,小城
位于小城
的东北方向,直线距离
.现规划经过小城
修建公路
(
,
分别在
与
上),与
,
围成三角形区域
.
(1)设
,
,求三角形区域
周长的函数解析式
;
(2)现计划开发周长最短的三角形区域
,求该开发区域的面积.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的分类垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):
“厨余垃圾”箱 | “可回收物”箱 | “其他垃圾”箱 | |
厨余垃圾 | 400 | 100 | 100 |
可回收物 | 30 | 240 | 30 |
其他垃圾 | 20 | 20 | 60 |
(1)试估计厨余垃圾投放正确的概率P;
(2)试估计生活垃圾投放错误的概率;
(3)假设厨余垃圾在“厨余垃圾”箱,“可回收物”箱,“其他垃圾”箱的投放量分别为a、b、c,其中a>0,a+b+c=600. 当数据a、b、c的方差s2最大时,写出a、b、c的值(结论不要求证明),并求出此时s2的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为选派一名学生参加全市实践活动技能竟赛,A、B两位同学在学校的学习基地现场进行加工直径为20mm的零件测试,他俩各加工的10个零件直径的相关数据如图所示(单位:mm)
![]()
A、B两位同学各加工的10个零件直径的平均数与方差列于下表;
平均数 | 方差 | |
A | 20 | 0.016 |
B | 20 | s2B |
根据测试得到的有关数据,试解答下列问题:
(Ⅰ)计算s2B,考虑平均数与方差,说明谁的成绩好些;
(Ⅱ)考虑图中折线走势情况,你认为派谁去参赛较合适?请说明你的理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com