精英家教网 > 高中数学 > 题目详情
6.已知A={0,1},B={-1,0,1},则从B到A的不同映射的有(  )
A.8个B.9个C.5个D.6个

分析 由映射的定义和分步计数原理可得答案.

解答 解:由映射的定义只需给A中的元素0和1在集合B中找到象即可,
∵0在集合B中的象有3种可能,1在集合B中的象页有3种可能,
由分步计数原理可得总的映射有3×3=9(个)
故选:B

点评 本题考查映射的定义,涉及分步计数原理的应用,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知三棱锥O-ABC的顶点A,B,C都在半径为2的球面上,O是球心,∠AOB=120°,当△AOC与△BOC的面积之和最大时,三棱锥O-ABC的体积为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C所对的边分别为a,b,c.
(1)若$\frac{c}{a}$=$\sqrt{5}$,且cosC=$\frac{2\sqrt{5}}{5}$,求sinA的值.
(2)若(b2+c2-a2)tanA=$\sqrt{2}$bc,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.对任意的实数x都有f(x+2)-f(x)=2f(1),若y=f(x-1)的图象关于x=1对称,且f(0)=2,则f(2015)+f(2016)=(  )
A.0B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.经过两点M(-2,m),N(1,4)的直线MN的倾斜角等于45°,则m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{2}{3}$,F1、F2分别为其左、右焦点,点M为椭圆C的上的顶点,且,△MF1F2的面积为2$\sqrt{5}$.
(1)求椭圆C的方程;
(2)如图,过圆x2+y2=b2上一点P(点P在y轴右侧),作该圆的切线l,交椭圆C于A,B两点,求△AF2B的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求与两直线x-2y+1=0和2x-4y-5=0等距离的点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)已知一次函数f(x)满足f(0)=5,且函数图象过点(-2,1),求f(x);
(2)已知f(x)是二次函数,且f(0)=0,f(x+1)=f(x)+x+1,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知圆C:(x+1)2+y2=25,定点A(1,0),M为圆上的一个动点,连接MA,作MA的垂直平分线交半径MC于P,当M点在圆周上运动时,点P的轨迹方程为$\frac{{x}^{2}}{\frac{25}{4}}+\frac{{y}^{2}}{\frac{21}{4}}=1$.

查看答案和解析>>

同步练习册答案