精英家教网 > 高中数学 > 题目详情

挪威数学家阿贝尔,曾经根据阶梯形图形的两种不同分割(如下图),利用它们的面积关系发现了一个重要的恒等式——阿贝尔公式:

则其中:(I)L3=        ;(Ⅱ)Ln=       

 

【答案】

.

【解析】

试题分析:由图(b)第三个长方形面积(从上往下数)可知,;对比图(a)与图(b)中最下的长方形面积易知.

考点:新概念的理解

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•黄冈模拟)挪威数学家阿贝尔,曾经根据阶梯形图形的两种不同分割(如图),利用它们的面积关系发现了一个重要的恒等式一阿贝尔公式:
a1b1+a2b2+a3b3+…+anbn=a1(b1-b2)+L2(b2-b3)+L3(b3-b4)+…+Ln-1(bn-1-bn)+Lnbn
则其中:(I)L3=
a1+a2+a3
a1+a2+a3
;(Ⅱ)Ln=
a1+a2+a3+…+an
a1+a2+a3+…+an

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北七市(州)高三年级联合考试理科数学试卷(解析版) 题型:填空题

挪威数学家阿贝尔,曾经根据阶梯形图形的两种不同分割(如下图),利用它们的面积关系发现了一个重要的恒等式——阿贝尔公式:

则其中:(I)L3=        ;(Ⅱ)Ln=        

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北荆州、黄冈、襄阳、十堰、宜昌、孝感、恩施七市高三4月联考理数学卷(解析版) 题型:填空题

挪威数学家阿贝尔,曾经根据阶梯形图形的两种不同分割(如下图),利用它们的面积关系发现了一个重要的恒等式一阿贝尔公式:

a1b1+a2b2+a3b3++anbn=a1(b1-b2)+L2(b2-b3)+L3(b3-b4)++Ln-1(bn-1-bn)+Lnbn

则其中:(I)L3=       ;(Ⅱ)Ln=       

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北荆州、黄冈、襄阳、十堰、宜昌、孝感、恩施七市高三4月联考文数学卷(解析版) 题型:填空题

挪威数学家阿贝尔,曾经根据阶梯形图形的两种不同分割(如下图),利用它们的面积关系发现了一个重要的恒等式一阿贝尔公式:

a1b1+a2b2+a3b3+ +anbn=a1(b1-b2)+L2(b2-b3)+L3(b3-b4)+ +Ln-1(bn-1-bn)+Lnbn

则其中:(I)L3=       ;(Ⅱ)Ln=       

 

查看答案和解析>>

同步练习册答案