| A. | $\frac{{\sqrt{3}+1}}{2}$ | B. | $\sqrt{3}+1$ | C. | $\frac{{\sqrt{6}}}{2}$ | D. | $\sqrt{5}-1$ |
分析 由题意可得PF1⊥QF2,又Q为PF1的中点,即有△PF1F2为等腰三角形,PF2=F1F2=2c,运用双曲线的定义和离心率公式,计算即可得到所求.
解答 解:由PF1与以F2为圆心,|OF2|为半径的圆相切于点Q,
可得PF1⊥QF2,又Q为PF1的中点,
即有△PF1F2为等腰三角形,PF2=F1F2=2c,
由QF2=c,可得PF1=2$\sqrt{3}$c,
由双曲线的定义可得PF1-PF2=2a,
即为2$\sqrt{3}$c-2c=2a,
由e=$\frac{c}{a}$=$\frac{1}{\sqrt{3}-1}$=$\frac{\sqrt{3}+1}{2}$.
故选:A.
点评 本题考查双曲线的定义、方程和性质,考查直径所对的圆周角为直角,以及等腰三角形的性质,考查离心率公式的运用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 7 | C. | 13 | D. | 11 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -4 | B. | 4 | C. | -6 | D. | 6 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com