ÊýÁÐ{an}µÄÇ°nÏîºÍ¼ÇΪSn£¬Ç°knÏîºÍ¼ÇΪSkn£¨n£¬k¡ÊN*£©£¬¶Ô¸ø¶¨µÄ³£Êýk£¬Èô
S(k+1)n
Skn
ÊÇÓënÎ޹صķÇÁã³£Êýt=f£¨k£©£¬Ôò³Æ¸ÃÊýÁÐ{an}ÊÇ¡°kÀàºÍ¿Æ±ÈÊýÁС±£®
£¨1£©ÒÑÖªSn=
4
3
an-
2
3
(n¡ÊN*)
£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬ÊýÁÐan=2cn£¬ÇóÖ¤ÊýÁÐcnÊÇÒ»¸ö¡°1 ÀàºÍ¿Æ±ÈÊýÁС±£¨4·Ö£©£»
£¨3£©ÉèµÈ²îÊýÁÐ{bn}ÊÇÒ»¸ö¡°kÀàºÍ¿Æ±ÈÊýÁС±£¬ÆäÖÐÊ×Ïîb1£¬¹«²îD£¬Ì½¾¿b1ÓëDµÄÊýÁ¿¹Øϵ£¬²¢Ð´³öÏàÓ¦µÄ³£Êýt=f£¨k£©£®
·ÖÎö£º£¨1£©ÀûÓÃan=Sn-Sn-1¿ÉÒÔÍƵ¼³öÊýÁÐanΪµÈ±ÈÊýÁУ¬È»ºó½«a1=2£¬q=4´úÈëµÈ±ÈÊýÁеÄͨÏʽ¼´¿ÉÇó³öÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©¸ù¾Ý£¨1£©ÖÐÇó³öµÄanµÄͨÏʽ±ã¿ÉÇó³öcnµÄͨÏʽΪcn=2n-1£¬È»ºóÇó³ö
S2n
Sn
Ϊ¶¨Öµ£¬±ã¿ÉÖ¤Ã÷ÊýÁÐcnÊÇÒ»¸ö¡°1 ÀàºÍ¿Æ±ÈÊýÁС±£»
£¨3£©¸ù¾ÝÌâÖС°kÀàºÍ¿Æ±ÈÊýÁС±µÄ¶¨Ò壬½«
S(k+1)n
Skn
=t±ã¿ÉÇó³öDÓëb1µÄ¹Øϵ£¬¼Ì¶ø¿ÉÒÔÇó³ö³£ÊýtµÄ±í´ïʽ£®
½â´ð£º½â£º£¨1£©ÁªÁ¢£º
Sn=
4
3
an-
2
3
Sn-1=
4
3
an-1-
2
3
(n¡Ý2)
£¬
¡à
4
3
an-
4
3
an-1=an
£¬
¡à
an
an-1
=4(n¡Ý2)
£¬
ËùÒÔ{an}ÊǵȱÈÊýÁУ¬
ÓÉ a1=
4
3
a1-
2
3
£¬µÃ a1=2£¬
¹Ê an=2•4n-1 =22n-1 £®
£¨2£©cn=2n-1Ç°nÏîµÄºÍSn=n2£¨1·Ö£©
S2n=4n2 £¬
S2n
Sn
=4
£¬
ËùÒÔÊýÁÐ{an}ÊÇÒ»¸ö¡°1ÀàºÍ¿Æ±ÈÊýÁС±£®
£¨3£©¶ÔÈÎÒâÒ»¸öµÈ²îÊýÁÐÊýÁÐbn£¬Ê×Ïîb1£¬¹«²îD£¬
Skn=knb1+
kn(kn-1)
2
D
£®
S(k+1)n=(k+1)nb1+
(k+1)n((k+1)n-1)
2
D
£¬
S(k+1)n
Skn
=
(k+1)b1+
(k+1)((k+1)n-1)
2
D
kb1+
k(kn-1)
2
D
=t
£¬¶ÔÒ»ÇÐn¡ÊN*ºã³ÉÁ¢£¬
2£¨k+1£©b1+£¨k+1£©£¨£¨k+1£©n-1£©=2ktb1+k£¨kn-1£©Dt¶ÔÒ»ÇÐn¡ÊN*ºã³ÉÁ¢£¬
£¨k+1-kt£©£¨2b1-D£©=n•D£¨k2t-£¨k+1£©2£©¶ÔÒ»ÇÐn¡ÊN*ºã³ÉÁ¢£¬
ËùÒÔ
(k2t-(k+1)2)D=0
(k+1-kt)(2b1-D)=0
£¬
D=2b1 £¬
ËùÒÔt=(
k+1
k
)2
£®
µãÆÀ£º±¾Ì⿼²éÁ˵ȲîÊýÁеĻù±¾ÐÔÖÊÒÔ¼°ÊýÁеĵÝÍƹ«Ê½£¬¿¼²éÁËѧÉúµÄ¼ÆËãÄÜÁ¦ºÍ¶ÔÊýÁеÄ×ÛºÏÕÆÎÕ£¬½âÌâʱעÒâÕûÌå˼ÏëºÍת»¯Ë¼ÏëµÄÔËÓã¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèµÈ±ÈÊýÁÐ{an}µÄ¹«±Èq¡Ù1£¬Sn±íʾÊýÁÐ{an}µÄÇ°nÏîµÄºÍ£¬Tn±íʾÊýÁÐ{an}µÄÇ°nÏîµÄ³Ë»ý£¬Tn£¨k£©±íʾ{an}µÄÇ°nÏîÖгýÈ¥µÚkÏîºóÊ£ÓàµÄn-1ÏîµÄ³Ë»ý£¬¼´Tn£¨k£©=
Tn
ak
£¨n£¬k¡ÊN+£¬k¡Ün£©£¬ÔòÊýÁÐ
SnTn
Tn(1)+Tn(2)+¡­+Tn(n)
µÄÇ°nÏîµÄºÍÊÇ
a12
2-q-q-1
£¨n+nq-
q-qn+1+1-q1-n
1-q
£©
a12
2-q-q-1
£¨n+nq-
q-qn+1+1-q1-n
1-q
£©
£¨ÓÃa1ºÍq±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈôÊýÁÐ{an}µÄͨÏîan=
1
pn-q
£¬ÊµÊýp£¬qÂú×ãp£¾q£¾0ÇÒp£¾1£¬snΪÊýÁÐ{an}µÄÇ°nÏîºÍ£®
£¨1£©ÇóÖ¤£ºµ±n¡Ý2ʱ£¬pan£¼an-1£»
£¨2£©ÇóÖ¤sn£¼
p
(p-1)(p-q)
(1-
1
pn
)
£»
£¨3£©Èôan=
1
(2n-1)(2n+1-1)
£¬ÇóÖ¤sn£¼
2
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªSnÊÇÊýÁÐ{an}µÄÇ°nÏîºÍ£¬an£¾0£¬Sn=
a
2
n
+an
2
£¬n¡ÊN*£¬
£¨1£©ÇóÖ¤£º{an}ÊǵȲîÊýÁУ»
£¨2£©ÈôÊýÁÐ{bn}Âú×ãb1=2£¬bn+1=2an+bn£¬ÇóÊýÁÐ{bn}µÄͨÏʽbn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÉÌÇð¶þÄ££©ÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÈôÊýÁÐ{an}µÄ¸÷Ïî°´ÈçϹæÂÉÅÅÁУº
1
2
£¬
1
3
£¬
2
3
£¬
1
4
£¬
2
4
£¬
3
4
£¬
1
5
£¬
2
5
£¬
3
5
£¬
4
5
¡­£¬
1
n
£¬
2
n
£¬¡­£¬
n-1
n
£¬¡­ÓÐÈçÏÂÔËËãºÍ½áÂÛ£º
¢Ùa24=
3
8
£»
¢ÚÊýÁÐa1£¬a2+a3£¬a4+a5+a6£¬a7+a8+a9+a10£¬¡­ÊǵȱÈÊýÁУ»
¢ÛÊýÁÐa1£¬a2+a3£¬a4+a5+a6£¬a7+a8+a9+a10£¬¡­µÄÇ°nÏîºÍΪTn=
n2+n
4
£»
¢ÜÈô´æÔÚÕýÕûÊýk£¬Ê¹Sk£¼10£¬Sk+1¡Ý10£¬Ôòak=
5
7
£®
ÆäÖÐÕýÈ·µÄ½áÂÛÊÇ
¢Ù¢Û¢Ü
¢Ù¢Û¢Ü
£®£¨½«ÄãÈÏΪÕýÈ·µÄ½áÂÛÐòºÅ¶¼ÌîÉÏ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐÃüÌ⣺
¢ÙÈôÊýÁÐ{an}µÄÇ°nÏîºÍSn=2n+1£¬ÔòÊýÁÐ{an}ΪµÈ±ÈÊýÁУ»
¢ÚÔÚ¡÷ABCÖУ¬Èç¹ûA=60¡ã£¬a=
6
£¬b=4
£¬ÄÇôÂú×ãÌõ¼þµÄ¡÷ABCÓÐÁ½½â£»
¢ÛÉ躯Êýf£¨x£©=x|x-a|+b£¬Ôòº¯Êýf£¨x£©ÎªÆ溯ÊýµÄ³äÒªÌõ¼þÊÇa2+b2=0£»
¢ÜÉèÖ±ÏßϵM£ºxcos¦È+£¨y-2£©sin¦È=1£¨0¡Ü¦È¡Ü2¦Ð£©£¬ÔòMÖеÄÖ±ÏßËùÄÜΧ³ÉµÄÕýÈý½ÇÐÎÃæ»ý¶¼ÏàµÈ£®
ÆäÖÐÕæÃüÌâµÄÐòºÅÊÇ
¢Û
¢Û
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸