精英家教网 > 高中数学 > 题目详情
(2012•天门模拟)设点A(1,0),B(2,1),如果直线ax+by=1与线段AB有一个公共点,那么a2+b2(  )
分析:由题意得:点A(1,0),B(2,1)在直线ax+by=1的两侧,那么把这两个点代入ax+by-1,它们的符号相反,乘积小于等于0,即可得出关于a,b的不等关系,画出此不等关系表示的平面区域,结合线性规划思想求出a2+b2的取值范围.
解答:解:∵直线ax+by=1与线段AB有一个公共点,
∴点A(1,0),B(2,1)在直线ax+by=1的两侧,
∴(a-1)(2a+b-1)≤0,
a-1≤0
2a+b-1≥0
a-1≥0
2a+b-1≤0

画出它们表示的平面区域,如图所示.
a2+b2表示原点到区域内的点的距离的平方,
由图可知,当原点O到直线2x+y-1=0的距离为原点到区域内的点的距离的最小值,
∵d=
|-1|
4+1

那么a2+b2的最小值为:d2=
1
5

故选A.
点评:本题考查二元一次不等式组与平面区域问题、函数的最值及其几何意义,是基础题.准确把握点与直线的位置关系,找到图中的“界”,是解决此类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•天门模拟)已知t>0,若
t
0
(2x-1)dx=6,则t的值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天门模拟)函数f(x)=2x-1+log2x的零点所在区间是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天门模拟)已知i是虚数单位,则复数z=i+2i2+3i3所对应的点是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天门模拟)已知如图,六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC.则下列结论正确的个数是(  )
①CD∥平面PAF   ②DF⊥平面PAF  ③CF∥平面PAB   ④CF∥平面PAD.

查看答案和解析>>

同步练习册答案