精英家教网 > 高中数学 > 题目详情
设n∈N+,圆Cn:x2+y2=R(Rn>0)与y轴正半轴的交点为M,与曲线y=的交点为N(xn,yn),直线MN与x轴的交点为A(an,0).
(1)用xn表示Rn和an
(2)若数列{xn}满足:xn+1=4xn+3,x1=3.
①求常数P的值使数列{an+1-p•an}成等比数列;
②比较an与2•3n的大小.
【答案】分析:(1)根据y=与圆Cn交于点N,可得,确定直线MN的方程,利用点N(xn,yn)在直线MN上,即可用xn表示Rn和an
(2)由xn+1=4xn+3得{xn+1}是以4为首项,4为公比的等比数列,由此可求,①利用数列{an+1-p•an}成等比数列,构建等式,即可求得结论;
②由①知:,构建函数f(x)=(x+1)n-xn(x>0),证明函数是增函数,即可得到结论.
解答:解:(1)∵y=与圆Cn交于点N,∴=
,…(2分)
由题可知,点M的坐标为(0,Rn),从而直线MN的方程为,…(3分)
由点N(xn,yn)在直线MN上得:,…(4分)
代入化简得:.…(6分)
(2)由xn+1=4xn+3得:1+xn+1=4(xn+1),…(7分)
又x1=3,∴1+x1=4,故{xn+1}是以4为首项,4为公比的等比数列
∴xn+1=4•4n-1=4n,∴       …(8分)
①an+1-p•an=4n+1+2n+1-p(4n+2n)=(4-p)•4n+(2-p)•2n,an+2-p•an+1=(16-4p)•4n+(4-2p)•2n
令an+2-p•an+1=q(an+1-p•an)得:(16-4p)•4n+(4-2p)•2n=q[(4-p)•4n+(2-p)•2n]…(9分)
,∴,解得:
故当p=2时,数列{an+1-p•an}成公比为4的等比数列;当p=4时,数列{an+1-p•an}成公比为2的等比数列. …(11分)
②由①知:,当n=1时,=3•21
当n≥2时,.…(12分)
事实上,令f(x)=(x+1)n-xn(x>0),则f′(x)=n[(x+1)n-1-xn-1]>0,
故f(x)=(x+1)n-xn(x>0)是增函数,
∴f(3)>f(2),即:4n-3n>3n-2n,即.…(14分)
点评:本题考查数列与函数的综合,考查数列的通项,考查大小比较,确定数列的通项是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•佛山一模)设n∈N*,圆Cn:x2+y2=
R
2
n
(Rn>0)与y轴正半轴的交点为M,与曲线y=
x
的交点为N(
1
n
yn
),直线MN与x轴的交点为A(an,0).
(1)用n表示Rn和an
(2)求证:an>an+1>2;
(3)设Sn=a1+a2+a3+…+an,Tn=1+
1
2
+
1
3
+…+
1
n
,求证:
7
5
Sn-2n
Tn
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•佛山一模)设n∈N+,圆Cn:x2+y2=R
 
2
n
(Rn>0)与y轴正半轴的交点为M,与曲线y=
x
的交点为N(xn,yn),直线MN与x轴的交点为A(an,0).
(1)用xn表示Rn和an
(2)若数列{xn}满足:xn+1=4xn+3,x1=3.
①求常数P的值使数列{an+1-p•an}成等比数列;
②比较an与2•3n的大小.

查看答案和解析>>

科目:高中数学 来源:佛山一模 题型:解答题

设n∈N*,圆Cn:x2+y2=
R2n
(Rn>0)与y轴正半轴的交点为M,与曲线y=
x
的交点为N(
1
n
yn
),直线MN与x轴的交点为A(an,0).
(1)用n表示Rn和an
(2)求证:an>an+1>2;
(3)设Sn=a1+a2+a3+…+an,Tn=1+
1
2
+
1
3
+…+
1
n
,求证:
7
5
Sn-2n
Tn
3
2

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省珠海市红旗中学高三(上)12月月考数学试卷(解析版) 题型:解答题

设n∈N*,圆Cn:x2+y2=(Rn>0)与y轴正半轴的交点为M,与曲线的交点为N(),直线MN与x轴的交点为A(an,0).
(1)用n表示Rn和an
(2)求证:an>an+1>2;
(3)设Sn=a1+a2+a3+…+an,Tn=,求证:

查看答案和解析>>

同步练习册答案