精英家教网 > 高中数学 > 题目详情
函数y=sinxcosx的最小值是
 
分析:由于y=sinxcosx=
1
2
sin2x而x∈R故-
1
2
 ≤
1
2
sin2x≤
1
2
所以ymin=-
1
2
解答:解:∵y=sinxcosx
∴y=
1
2
sin2x
又∵x∈R
-
1
2
 ≤
1
2
sin2x≤
1
2

-
1
2
≤y≤
1
2

ymin=-
1
2

故答案为:-
1
2
点评:本题主要考查了已知三角函数求最值.当遇到此类问题时需利用二倍角公式和辅助角公式将三角函数转化为y=Asin(wx+∅)+k或y=Acos(Wx+∅)+k或y=tan(Wx+∅)+k的形式再结合定义域和正弦函数,余弦函数,正切函数的图象求解!
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=sinxcosx+
3
cos2x-
3
的图象的一个对称中心是(  )
A、(
3
,-
3
2
)
B、(
6
,-
3
2
)
C、(-
3
3
2
)
D、(
π
3
,-
3
)

查看答案和解析>>

科目:高中数学 来源: 题型:

在下列命题中:
①α=2kπ+
π
3
(k∈Z)是tanα=
3
的充分不必要条件
②函数y=sinxcosx的最小正周期是2π
③在△ABC中,若cosAcosB>sinAsinB,则△ABC为钝角三角形
④函数y=2sin(2x+
π
6
)+1图象的对称中心为(
2
-
π
12
,1)
(k∈Z).
其中正确的命题为
 
(请将正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sinxcosx+
3
cos2x
的图象的一个对称中心是(  )
A、(
π
3
-
3
2
B、(
3
,-
3
2
C、(
3
3
2
D、(
π
3
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•青浦区二模)函数y=sinxcosx+
3
的最小正周期为
π
π

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:
①函数f(x)=lnx+3x-6的零点只有1个且属于区间(1,2);
②若关于x的不等式ax2+2ax+1>0恒成立,则a∈(0,1);
③函数y=x的图象与函数y=sinx的图象有3个不同的交点;
④函数y=sinxcosx+sinx+cosx,x∈[0,
π4
]
的最小值是1.
正确的有
 
.(请将你认为正确的说法的序号都写上)

查看答案和解析>>

同步练习册答案