已知两函数f(x)=8x2+16x-k,g(x)=2x3+5x2+4x,其中k为实数.
(1)对任意x∈[-3,3]都有f(x)≤g(x)成立,求k的取值范围.
(2)存在x∈[-3,3]使f(x)≤g(x)成立,求k的取值范围.
(3)对任意x1,x2∈[-3,3]都有f(x1)≤g(x2),求k的取值范围.
(1) k≥45 (2) k≥-7 (3) k≥141
【解析】(1)设h(x)=g(x)-f(x)=2x3-3x2-12x+k,
问题转化为x∈[-3,3]时,h(x)≥0恒成立,
即h(x)min≥0,x∈[-3,3].
令h'(x)=6x2-6x-12=0,得x=2或x=-1.
∵h(-3)=k-45,h(-1)=k+7,h(2)=k-20,
h(3)=k-9,
∴h(x)min=k-45≥0,得k≥45.
(2)据题意:存在x∈[-3,3],使f(x)≤g(x)成立,
即为h(x)=g(x)-f(x)≥0在x∈[-3,3]上能成立,
∴h(x)max≥0.∴h(x)max=k+7≥0,得k≥-7.
(3)据题意:f(x)max≤g(x)min,x∈[-3,3],
易得f(x)max=f(3)=120-k,g(x)min=g(-3)=-21.
∴120-k≤-21,得k≥141.
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业十六第二章第十三节练习卷(解析版) 题型:选择题
根据=0推断直线x=0,x=2π,y=0和正弦曲线y=sinx所围成的曲边梯形的面积时,正确结论为( )
(A)面积为0
(B)曲边梯形在x轴上方的面积大于在x轴下方的面积
(C)曲边梯形在x轴上方的面积小于在x轴下方的面积
(D)曲边梯形在x轴上方的面积等于在x轴下方的面积
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业十八第三章第二节练习卷(解析版) 题型:选择题
已知cos(-α)=,则sin(α-)等于( )
(A) (B)- (C) (D)-
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业十八第三章第二节练习卷(解析版) 题型:选择题
等于( )
(A)sin2-cos2 (B)cos2-sin2
(C)±(sin2-cos2) (D)sin2+cos2
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业十五第二章第十二节练习卷(解析版) 题型:选择题
函数y=2x3+1的图象与函数y=3x2-b的图象有三个不相同的交点,则实数b的取值范围是( )
(A)(-2,-1) (B)(-1,0)
(C)(0,1) (D)(1,2)
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业十二第二章第九节练习卷(解析版) 题型:解答题
为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为
y=
且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,国家将给予补偿.
(1)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?
(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业十九第三章第三节练习卷(解析版) 题型:选择题
函数y=2sin(2x+)的图象关于点P(x0,0)对称,若x0∈[-,0],则x0等于( )
(A)- (B)- (C)- (D)-
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业十一第二章第八节练习卷(解析版) 题型:填空题
若函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[-1,1]时,f(x)=1-x2,函数g(x)=lg|x|,则函数y=f(x)与y=g(x)的图象在区间[-5,5]内的交点个数为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com