精英家教网 > 高中数学 > 题目详情
(2013•内江一模)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=
x2+a
bx-c
有且仅有两个不动点0、2.
(1)求b,c满足的关系式;
(2)若c=2时,相邻两项和不为零的数列{an}满足4Snf(
1
an
)=1
(Sn是数列{an}的前n项和),求证:-
1
an+1
<ln
n+1
n
<-
1
an
分析:(1)利用f(x)的不动点的定义,结合函数f(x)=
x2+a
bx-c
有且仅有两个不动点0,2,可得0,2是方程(1-b)x2+cx+a=0的两个根,利用韦达定理,可求b,c满足的关系式;
(2)确定an=-n,于是要证的不等式即为
1
n+1
<ln
n+1
n
1
n
从而我们可以考虑证明不等式:
1
x+1
<ln
x+1
x
1
x
(x>0).
解答:(1)解:设
x2+a
bx-c
=x,可得(1-b)x2+cx+a=0,(b≠1).
由于函数f(x)=
x2+a
bx-c
有且仅有两个不动点0,2,故0,2是方程(1-b)x2+cx+a=0的两个根,
2+0=-
c
1-b
2•0=
a
1-b

解得a=0,b=1+
c
2

(2)证明:c=2时,b=1+
c
2
=2,∴f(x)=
x2
2x-2

4Snf(
1
an
)=1
可得2Sn=an-an2
当n≥2时,2Sn-1=an-1-an-12
两式相减得(an+an-1)(an-an-1+1)=0,所以an=-an-1或an-an-1=-1.
当n=1时,2a1=a1-a12,∴a1=-1,
若an=-an-1,则a2=1与an≠1矛盾,所以an-an-1=-1,从而an=-n,
于是要证的不等式即为
1
n+1
<ln
n+1
n
1
n

从而我们可以考虑证明不等式:
1
x+1
<ln
x+1
x
1
x
(x>0)
令1+
1
x
=t,x>0,则t>1,x=
1
t-1

再令g(t)=t-1-lnt,g′(t)=1-
1
t
,由t∈(1,+∞)知g′(t)>0,
所以当t∈(1,+∞)时,g(t)单调递增,所以g(t)>g(1)=0,于是t-1>lnt,即
1
x
>ln
x+1
x
,x>0…①.
令h(t)=lnt-1+
1
t
,h′(t)=
1
t
-
1
t2
=
t-1
t2
,当t∈(1,+∞)时,h(t)单调递增,所以h(t)>h(1)=0,
于是lnt>1-
1
t
,即ln
x+1
x
1
x+1
,x>0…②.
由①②可知
1
x+1
<ln
x+1
x
1
x
(x>0)
1
n+1
<ln
n+1
n
1
n
点评:本题主要考查利用导数研究函数的单调性,数列与不等式的综合应用,考查学生分析解决问题的能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•内江一模)某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•内江一模)设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x-2)=f(x+2)且当x∈[-2,0]时,f(x)=(
1
2
x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是
34
,2)
34
,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•内江一模)如图茎叶图表示的是甲,乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为
4
5
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•内江一模)武汉市为增强市民交通安全意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组
[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.
(1)分别求第3,4,5组的频率;
(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?
(3)在(2)的条件下,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.

查看答案和解析>>

同步练习册答案