分析 根据所给的均值为2,标准差是$\sqrt{2n}$,把方差和标准差代入正态分布的密度函数式中,得到要求的正态分布的概率密度函数.
解答 解:在密度函数f(x)=$\frac{1}{\sqrt{2π}σ}{e}^{-\frac{(x-μ)^{2}}{2{σ}^{2}}}$,x∈R中,
μ=2,σ=$\sqrt{2n}$,
故f(x)=$\frac{1}{2\sqrt{πn}}$$e\frac{-(x-2)^{2}}{4n}$,x∈R.
故答案为:f(x)=$\frac{1}{2\sqrt{πn}}$$e\frac{-(x-2)^{2}}{4n}$,x∈R.
点评 本题考查正态分布的特点及曲线所表示的意义,考查正态曲线的概率密度函数中两个参数的意义,本题是一个基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com