精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C的对称中心为坐标原点O,焦点在x轴上,左右焦点分别为F,F,左右顶点分别为A,B,且|F1F2|=4,|AB|=4
(1)求椭圆的方程;
(2)过F1的直线l与椭圆C相交于M,N两点,若△MF2N的面积为 ,求直线l的方程.

【答案】
(1)解:∵椭圆C的对称中心为坐标原点O,焦点在x轴上,

左右焦点分别为F,F,左右顶点分别为A,B,且|F1F2|=4,|AB|=4

,解得a=2 ,c=2,b=2,

∴椭圆的方程为


(2)解:由(1)知F1(﹣2,0),设过F1的直线l的方程为:x+2=my,

,得(m2+2)y2﹣4my﹣4=0,

设M(x1,y1),N(x2,y2),则

∵△MF2N的面积为

= =2 =

化简,得2m4﹣m2﹣1=0,解得m2=1或m2=﹣ (舍),

解得m=±1,此时直线l的方程为x﹣y+2=0,或x+y+2=0


【解析】(1)由|F1F2|=4,|AB|=4 ,建立方程组,求出a=2 ,c=2,b=2,由此能求出椭圆的方程.(2)由F1(﹣2,0),设过F1的直线l的方程为:x+2=my,由 ,得(m2+2)y2﹣4my﹣4=0,利用韦达定理、弦长公式、三角形面积公式,能求出m=±1,由此能求出直线l的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某创业投资公司拟开发某种新能源产品,估计能获得万元到万元的投资利益,现准备制定一个对科研课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,且奖金不超过万元,同时奖金不超过收益的

)请分析函数是否符合公司要求的奖励函数模型,并说明原因.

)若该公司采用函数模型作为奖励函数模型,试确定最小正整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据IEC(国际电工委员会)调查显示,小型风力发电项目投资较少,且开发前景广阔,但受风力自然资源影响,项目投资存在一定风险.根据测算,风能风区分类标准如下:

风能分类

一类风区

二类风区

平均风速m/s

8.5~10

6.5~8.5

假设投资A项目的资金为x(x≥0)万元,投资B项目资金为y(y≥0)万元,调研结果是:未来一年内,位于一类风区的A项目获利30%的可能性为0.6,亏损20%的可能性为0.4;位于二类风区的B项目获利35%的可能性为0.6,亏损10%的可能性是0.1,不赔不赚的可能性是0.3.
(1)记投资A,B项目的利润分别为ξ和η,试写出随机变量ξ与η的分布列和期望Eξ,Eη;
(2)某公司计划用不超过100万元的资金投资于A,B项目,且公司要求对A项目的投资不得低于B项目,根据(1)的条件和市场调研,试估计一年后两个项目的平均利润之和z=Eξ+Eη的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四边形OABC的四个顶点坐标分别为O(0,0)、A(6,2)、B(4,6)、C(2,6),直线ykx(<k<3)分四边形OABC为两部分,S表示靠近x轴一侧的那一部分的面积.

(1)求Sf(k)的函数表达式;

(2)当k为何值时,直线ykx将四边形OABC分为面积相等的两部分?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足:Sn=1﹣an(n∈N*),其中Sn为数列{an}的前n项和. (Ⅰ)试求{an}的通项公式;
(Ⅱ)若数列{bn}满足: (n∈N*),试求{bn}的前n项和公式Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l的参数方程为 (t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为3ρ2cos2θ+4ρ2sin2θ=12.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)已知直线l与曲线C交于A,B两点,试求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=2sin(3x+φ)的图象向右平移动 个单位,得到的图象关于y轴对称,则|φ|的最小值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过点 和直线相切.

1)求圆的方程;

(2)若直线经过点并且被圆截得的弦长为2,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:若函数的定义域为,且存在非零常数,对任意 恒成立,则称为线周期函数, 的线周期.

(1)下列函数①,②,③(其中表示不超过x的最大整数),是线周期函数的是 (直接填写序号);

(2)若为线周期函数,其线周期为,求证: 为周期函数;

(3)若为线周期函数,求的值.

查看答案和解析>>

同步练习册答案