精英家教网 > 高中数学 > 题目详情

P正三角形ABC所在平面外一点,PA=PB=PC=,且PA,PB,PC两两垂直,则P到面ABC的距离为(  )

A.B.C.1D.

C

解析试题分析: 先根据题意,由于P正三角形ABC所在平面外一点,PA=PB=PC=,且PA,PB,PC两两垂直,故可知点P在底面的射影为底面的垂心,即为底面的重心,那么利用正三角形的性质可知,底面的边长为,则底面的高线长为,利用勾股定理可知P到面ABC的距离为1,选C.
考点:本题主要考查了空间中点到面的距离的求解问题。
点评:解决该试题的关键是画出图形,过P作底面ABC 的垂线,垂足为O,连接CO并延长交AB于E,说明PO为所求

练习册系列答案
相关习题

科目:高中数学 来源: 题型:单选题

已知直线不重合,平面不重合,下列命题正确的是(   )

A.若,则
B.若,则
C.若,则
D.若,则

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

( )已知两个不同的平面,能判定//的条件是

A.分别平行于直线B.分别垂直于直线
C.分别垂直于平面D.内有两条直线分别平行于

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图,在空间四边形ABCD中,点E、H分别是边AB、AD的中点,F、G分别是边BC、CD上的点,且,则(  )

A.EF与GH互相平行
B.EF与GH异面
C.EF与GH的交点M可能在直线AC上,也可能不在直线AC上
D.EF与GH的交点M一定在直线AC上

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

为三条不同的直线,为一个平面,下列命题中不正确的是(   )

A.若,则相交
B.若
C.若 // // ,则
D.若// ,则//

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图,所在的平面和四边形所在的平面互相垂直,且.若,则动点在平面内的轨迹是  
                        

A.椭圆的一部分 B.线段 C.双曲线的一部分 D.以上都不是

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

垂直于同一平面的两条直线一定(   )

A.相交B.平行C.异面D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

表示三条不同的直线,表示平面,给出下列命题:
①若,则;②若,则
③若,则;④若,则;则其中正确的是(   )

A.①② B.②③ C.①④ D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

三棱锥的高为,若三个侧面两两垂直,则为△的(  )

A.内心 B.外心 C.垂心 D.重心 

查看答案和解析>>

同步练习册答案