【题目】某人经营淡水池塘养草鱼,根据过去
期的养殖档案,该池塘的养殖重量
(百斤)都在
百斤以上,其中不足
百斤的有
期,不低于
百斤且不超过
百斤的有
期,超过
百斤的有
期.根据统计,该池塘的草鱼重量的增加量
(百斤)与使用某种饵料的质量
(百斤)之间的关系如图所示.
![]()
(1)根据数据可知
与
具有线性相关关系,请建立
关于
的回归方程
;如果此人设想使用某种饵料
百斤时,草鱼重量的增加量须多于
百斤,请根据回归方程计算,确定此方案是否可行?并说明理由.
(2)养鱼的池塘对水质含氧量与新鲜度要求较高,某商家为该养殖户提供收费服务,即提供不超过
台增氧冲水机,每期养殖使用的冲水机运行台数与鱼塘的鱼重量
有如下关系:
鱼的重量(单位:百斤) |
|
|
|
冲水机只需运行台数 |
|
|
|
若某台增氧冲水机运行,则商家每期可获利
千元;若某台冲水机未运行,则商家每期亏损
千元.视频率为概率,商家欲使每期冲水机总利润的均值达到最大,应提供几台增氧冲水机?
附:对于一组数据
,其回归方程
的斜率和截距的最小二乘估计公式分别为![]()
![]()
![]()
科目:高中数学 来源: 题型:
【题目】在三棱柱ABC﹣A1B1C1中,E是棱AB的中点,动点F是侧面ACC1A1(包括边界)上一点,若EF//平面BCC1B1,则动点F的轨迹是( )
A.线段B.圆弧
C.椭圆的一部分D.抛物线的一部分
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年底,武汉发生“新型冠状病毒”肺炎疫情,国家卫健委紧急部署,从多省调派医务工作者前去支援,正值农历春节举家团圆之际,他们成为“最美逆行者”.武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者疑似的新冠肺炎患者无法明确排除新冠肺炎的发热患者和确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户不漏一人.若在排查期间,某小区有5人被确认为“确诊患者的密切接触者”,现医护人员要对这5人随机进行逐一“核糖核酸”检测,只要出现一例阳性,则将该小区确定为“感染高危小区”.假设每人被确诊的概率均为
且相互独立,若当
时,至少检测了4人该小区被确定为“感染高危小区”的概率取得最大值,则
____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正四棱锥
的侧棱和底面边长相等,在这个正四棱锥的
条棱中任取两条,按下列方式定义随机变量
的值:
若这两条棱所在的直线相交,则
的值是这两条棱所在直线的夹角大小(弧度制);
若这两条棱所在的直线平行,则
;
若这两条棱所在的直线异面,则
的值是这两条棱所在直线所成角的大小(弧度制).
(1)求
的值;
(2)求随机变量
的分布列及数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2019年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示:
![]()
(1)由折线图可以看出,可用线性回归模型拟合月利润
(单位:百万元)与月份代码
之间的关系,求
关于
的线性回归方程,并预测该公司2020年4月份的利润;
(2)甲公司新研制了一款产品,需要采购一批新型材料,现有A,B两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,但新材料的不稳定性会导致材料的使用寿命不同,现对A,B两种型号的新型材料对应的产品各100件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表:
![]()
经甲公司测算平均每件新型材料每月可以带来6万元收人入,不考虑除采购成本之外的其他成本,A型号材料每件的采购成本为10万元,B型号材料每件的采购成本为12万元.假设每件新型材料的使用寿命都是整月数,且以频率作为每件新型材料使用寿命的概率,如果你是甲公司的负责人,以每件新型材料产生利润的平均值为决策依据,你会选择采购哪款新型材料?
参考数据:
,
.
参考公式:回归直线方程
,其中
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,△PAB是边长为2的等边三角形,底面ABCD为直角梯形,AB∥CD,AB⊥BC,BC=CD=1,PD
.
![]()
(1)证明:AB⊥PD.
(2)求二面角A﹣PB﹣C的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com