【题目】已知函数
.
(1)若
在定义域内单调递增,求
的取值范围;
(2)若
,且满足
,问:函数
在
处的导数能否为0?若能,求出
处的导数;若不能,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点为
,左右顶点分别为
,
,上顶点为
,![]()
(1)求椭圆离心率;
(2)点
到直线
的距离为
,求椭圆方程;
(3)在(2)的条件下,点
在椭圆上且异于
、
两点,直线
与直线
交于点
,说明
运动时以
为直径的圆与直线
的位置关系,并证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】超级细菌是一种耐药性细菌,产生超级细菌的主要原因是用于抵抗细菌侵蚀的药物越来越多,但是由于滥用抗生素的现象不断的发生,很多致病菌也对相应的抗生素产生了耐药性,更可怕的是,抗生素药物对它起不到什么作用,病人会因为感染而引起可怕的炎症,高烧,痉挛,昏迷甚至死亡.某药物研究所为筛查某种超级细菌,需要检验血液是否为阳性,现有n(
)份血液样本,每个样本取到的可能性相等,有以下两种检验方式:(1)逐份检验,则需要检验n次;(2)混合检验,将其中k(
且
)份血液样本分别取样混合在一起检验,若检验结果为阴性,则这份的血液全为阴性,因而这k份血液样本只要检验一次就够了;如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份血液再逐份检验,此时这k份血液的检验次数总共为
次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p(
).现取其中k(
且
)份血液样本,记采用逐份检验方式,样本需要检验的总次数为
,采用混合检验方式,样本需要检验的总次数为
.
(1)运用概率统计的知识,若
,试求P关于k的函数关系式
;
(2)若P与抗生素计量
相关,其中
,
,…,
(
)是不同的正实数,满足
,对任意的
(
),都有
.
(i)证明:
为等比数列;
(ii)当
时,采用混合检验方式可以使得样本需要检验的总次数期望值比逐份检验的总次数期望值更少,求k的最大值.
参考数据:
,
,
,
,
,
,
,
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】执行如图所示的程序框图,正确的是( )
![]()
A.若输入a,b,c的值依次为1,2,4,则输出的值为5
B.若输入a,b,c的值依次为2,3,5,则输出的值为7
C.若输入a,b,c的值依次为3,4,5,则输出的值为15
D.若输入a,b,c的值依次为2,3,4,则输出的值为10
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆
的左右焦点分别为的
、
,离心率为
;过抛物线
焦点
的直线交抛物线于
、
两点,当
时,
点在
轴上的射影为
。连结
并延长分别交
于
、
两点,连接
;
与
的面积分别记为
,
,设
.
(Ⅰ)求椭圆
和抛物线
的方程;
(Ⅱ)求
的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人经营淡水池塘养草鱼,根据过去
期的养殖档案,该池塘的养殖重量
(百斤)都在
百斤以上,其中不足
百斤的有
期,不低于
百斤且不超过
百斤的有
期,超过
百斤的有
期.根据统计,该池塘的草鱼重量的增加量
(百斤)与使用某种饵料的质量
(百斤)之间的关系如图所示.
![]()
(1)根据数据可知
与
具有线性相关关系,请建立
关于
的回归方程
;如果此人设想使用某种饵料
百斤时,草鱼重量的增加量须多于
百斤,请根据回归方程计算,确定此方案是否可行?并说明理由.
(2)养鱼的池塘对水质含氧量与新鲜度要求较高,某商家为该养殖户提供收费服务,即提供不超过
台增氧冲水机,每期养殖使用的冲水机运行台数与鱼塘的鱼重量
有如下关系:
鱼的重量(单位:百斤) |
|
|
|
冲水机只需运行台数 |
|
|
|
若某台增氧冲水机运行,则商家每期可获利
千元;若某台冲水机未运行,则商家每期亏损
千元.视频率为概率,商家欲使每期冲水机总利润的均值达到最大,应提供几台增氧冲水机?
附:对于一组数据
,其回归方程
的斜率和截距的最小二乘估计公式分别为![]()
![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其中
,
,
为自然对数的底数.
若
,
,①若函数
单调递增,求实数
的取值范围;②若对任意
,
恒成立,求实数
的取值范围.
若
,且
存在两个极值点
,
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AB是平面
的斜线段,A为斜足,点C满足
,且在平面
内运动,则有以下几个命题:
![]()
①当
时,点C的轨迹是抛物线;
②当
时,点C的轨迹是一条直线;
③当
时,点C的轨迹是圆;
④当
时,点C的轨迹是椭圆;
⑤当
时,点C的轨迹是双曲线.
其中正确的命题是__________.(将所有正确的命题序号填到横线上)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com