【题目】已知椭圆
的右焦点为
,左右顶点分别为
,
,上顶点为
,![]()
(1)求椭圆离心率;
(2)点
到直线
的距离为
,求椭圆方程;
(3)在(2)的条件下,点
在椭圆上且异于
、
两点,直线
与直线
交于点
,说明
运动时以
为直径的圆与直线
的位置关系,并证明.
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知2a=2bcosC+csinB.
(Ⅰ)求tanB;
(Ⅱ)若C
,△ABC的面积为6,求BC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+lnx(a∈R).
(1)当a=
时,求f(x)在区间[1,e]上的最大值和最小值;
(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g(x)为f1(x),f2(x)的“活动函数”.已知函数
.
。若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
是正方形,点
在以
为直径的半圆弧上(
不与
,
重合),
为线段
的中点,现将正方形
沿
折起,使得平面
平面
.
![]()
(1)证明:
平面
.
(2)若
,当三棱锥
的体积最大时,求
到平面
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂在制造产品时需要用到长度为698mm的A型和长度为518mm的B型两种钢管,工厂利用长度为4000mm的钢管原材料,裁剪成若干A型和B型钢管。假设裁剪时损耗忽略不计,裁剪后所剩废料与原材料的百分比称为废料率.
(1)有两种裁剪方案的废料率小于4.5%,请说明这两种方案并计算它们的废料率;
(2)工厂现有100根原材料钢管,一根A型和一根B型钢管为一套毛胚。按(1)中的方案裁剪,最多可裁剪多少套毛胚?最终的废料率为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱柱ABC﹣A1B1C1中,E是棱AB的中点,动点F是侧面ACC1A1(包括边界)上一点,若EF//平面BCC1B1,则动点F的轨迹是( )
A.线段B.圆弧
C.椭圆的一部分D.抛物线的一部分
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】当今世界科技迅猛发展,信息日新月异.为增强全民科技意识,提高公众科学素养,某市图书馆开展了以“亲近科技、畅想未来”为主题的系列活动,并对不同年龄借阅者对科技类图书的情况进行了调查.该图书馆从只借阅了一本图书的借阅者中随机抽取100名,数据统计如表:
借阅科技类图书(人) | 借阅非科技类图书(人) | |
年龄不超过50岁 | 20 | 25 |
年龄大于50岁 | 10 | 45 |
(1)是否有99%的把握认为年龄与借阅科技类图书有关?
(2)该图书馆为了鼓励市民借阅科技类图书,规定市民每借阅一本科技类图书奖励积分2分,每借阅一本非科技类图书奖励积分1分,积分累计一定数量可以用积分换购自己喜爱的图书.用表中的样本频率作为概率的估计值.
(i)现有3名借阅者每人借阅一本图书,记此3人增加的积分总和为随机变量ξ,求ξ的分布列和数学期望;
(ii)现从只借阅一本图书的借阅者中选取16人,则借阅科技类图书最有可能的人数是多少?
附:K2
,其中n=a+b+c+d.
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com