精英家教网 > 高中数学 > 题目详情

一个袋中装有10个大小相同的小球.其中白球5个、黑球4个、红球1个.
(1)从袋中任意摸出2个球,求至少得到1个白球的概率;
(2)从袋中任意摸出3个球,记得到白球的个数为,求随机变量的数学期望

(1);(2)

解析试题分析:(1)古典概型,“至少得到一个白球”分为“恰好1个白球”和“两个都是白球”两类,也可以先求它的对立事件“两个都不是白球的概率”;(2)先考虑所有可能的取值,再求出各个取值的概率,最后求出的数学期望.
试题解析:(1)解:记“从袋中任意摸出两个球,至少得到一个白球”为事件
.                    3分
(2)随机变量的取值为0,1,2,3,      4分
由于     6分     ,      8分
,       10分    ,      12分
的分布列是


0
1
2
3





的数学期望.         13分
考点:离散型随机变量的概率分布、离散型随机变量的数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

湖南省在学业水平考查中设计了物理学科的实验考查方案:考生从道备选试验考查题中一次随机抽取题,并按照题目要求独立完成全部实验操作.规定:至少正确完成其中题便通过考查.已知道备选题中文科考生甲有题能正确完成,题不能完成;文科考生乙每题正确完成的概率都是,且每题正确完成与否互不影响.
(Ⅰ)分别写出文科考生甲正确完成题数和文科考生乙正确完成题数的概率分布列,并计算各自的数学期望;
(Ⅱ)试从两位文科考生正确完成题数的数学期望及通过考查的概率分析比较这两位考生的实验操作能力.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

气象部门提供了某地今年六月份(30天)的日最高气温的统计表如下:

日最高气温t (单位:℃)
t22℃
22℃<t28℃
28℃<t32℃

天数
6
12
   

由于工作疏忽,统计表被墨水污染,Y和Z数据不清楚,但气象部门提供的资料显示,六月份的日最高气温不高于32℃的频率为0.9.
某水果商根据多年的销售经验,六月份的日最高气温t (单位:℃)对西瓜的销售影响如下表:
日最高气温t (单位:℃)
t22℃
22℃<t28℃
28℃<t32℃

日销售额(千元)
2
5
    6
8
(Ⅰ) 求的值;
(Ⅱ) 若视频率为概率,求六月份西瓜日销售额的期望和方差;
(Ⅲ) 在日最高气温不高于32℃时,求日销售额不低于5千元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设有关于x的一元二次方程
(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;
(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

将一颗骰子先后抛掷2次,观察向上的点数,求:
(Ⅰ)两数之和为5的概率;
(Ⅱ)两数中至少有一个为奇数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知A,B,C,D四个城市,它们各自有一个著名的旅游点,依次记为A,b,C,D,把A,B,C,D和A,b,C,D分别写成左、右两列.现在一名旅游爱好者随机用4条线把城市与旅游点全部连接起来, 构成“一一对应”.规定某城市与自身的旅游点相连称为“连对”,否则称为“连错”,连对一条得2分,连错一条得0分.
(Ⅰ)求该旅游爱好者得2分的概率.
(Ⅱ)求所得分数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

现有甲、乙两个靶.某射手向甲靶射击两次,每次命中的概率为,每命中一次得1分,没有命中得0分;向乙靶射击一次,命中的概率为,命中得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.
(I)求该射手恰好命中两次的概率;
(II)求该射手的总得分的分布列及数学期望;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在一次数学考试中,第22,23,24题为选做题,规定每位考生必须且只须在其中选做一题,设5名考生选做这三题的任意一题的可能性均为,每位学生对每题的选择是相互独立的,各学生的选择相互之间没有影响.
(1)求其中甲、乙两人选做同一题的概率;
(2)设选做第23题的人数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图是在竖直平面内的一个“通道游戏”.图中竖直线段和斜线段都表示通道,并且在交点处相遇,若竖直线段有一条的为第一层,有二条的为第二层, ,依次类推.现有一颗小弹子从第一层的通道里向下运动,若在通道的分叉处,小弹子以相同的概率落入每个通道.记小弹子落入第层第个竖直通道(从左至右)的概率为,某研究性学习小组经探究发现小弹子落入第层的第个通道的次数服从二项分布,请你解决下列问题.

(Ⅰ)试求的值,并猜想的表达式;(不必证明)
(Ⅱ)设小弹子落入第6层第个竖直通道得到分数为,其中,试求的分布列及数学期望.

查看答案和解析>>

同步练习册答案