精英家教网 > 高中数学 > 题目详情
已知函数f(x)满足f(x)=4x2+2x+1.
(1)设g(x)=f(x-1)-2x,求g(x)在[-2,5]上的值域;
(2)设h(x)=f(x)-mx,在[2,4]上是单调函数,求m的取值范围.
分析:(1)根据已知写出g(x)的解析式,判断所给区间上的单调性再求最值即可得到值域;
(2)写出h(x)的解析式,数形结合求解m的取值.
解答:解:(1)因为f(x)=4x2+2x+1,
所以g(x)=f(x-1)-2x=4(x-1)2+2(x-1)+1-2x=4x2-8x+3,
因为g(x)是开口方向向上、对称轴为x=1的二次函数,
所以g(x)在[-2,1]上单调递减,在[1,5]上单调递增,
所以其最小值为g(1)=-1,最大值为g(5)=63,
所以函数g(x)在[-2,5]上的值域为[-1,63].
(2)由题意可得:h(x)=f(x)-mx=4x2+2x+1-mx=4x2+(2-m)x+1,
所以h(x)是开口方向向上、对称轴为x=-
2-m
8
=
m-2
8
的二次函数,
因为h(x)在[2,4]上是单调函数,所以
m-2
8
≤2或
m-2
8
≥4
,即m≤18或m≥34,
所以m的取值范围是(-∞,18]∪[34,+∞).
点评:本题考察二次函数的单调性、值域,解答时要注意数形结合,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x+y)=f(x)f(y),(x,y∈R)且f(1)=
1
2

(1)若n∈N*时,求f(n)的表达式;
(2)设bn=
nf(n+1)
f(n)
  (n∈N*)
,sn=b1+b2+…+bn,求
1
s1
+
1
s2
+…+
1
sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x) 满足f(x+4)=x3+2,则f-1(1)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x)+f'(0)-e-x=-1,函数g(x)=-λlnf(x)+sinx是区间[-1,1]上的减函数.
(1)当x≥0时,曲线y=f(x)在点M(t,f(t))的切线与x轴、y轴围成的三角形面积为S(t),求S(t)的最大值;
(2)若g(x)<t2+λt+1在x∈[-1,1]时恒成立,求t的取值范围;
(3)设函数h(x)=-lnf(x)-ln(x+m),常数m∈Z,且m>1,试判定函数h(x)在区间[e-m-m,e2m-m]内的零点个数,并作出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足:f(p+q)=f(p)f(q),f(1)=3,则
f2(1)+f(2)
f(1)
+
f2(2)+f(4)
f(3)
+
f2(3)+f(6)
f(5)
+
f2(4)+f(8)
f(7)
=
24.
24.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•珠海二模)已知函数f(x)满足:当x≥1时,f(x)=f(x-1);当x<1时,f(x)=2x,则f(log27)=(  )

查看答案和解析>>

同步练习册答案