精英家教网 > 高中数学 > 题目详情
如图,在三棱锥P—ABC中,已知点E,F,G分别是所在棱的中点,则下面结论中正确的是:     
①平面EFG//平面PBC
②平面EFG平面ABC
是直线EF与直线PC所成的角
是平面PAB与平面ABC所成二面角的平面角
①②③

考查知识点:本题考查立体几何中的面面的平行和垂直的判定应用,以及面面、线线的夹角问题。
解析:  如图E、F、G分别为各棱的中点
FG//PC,PC面PBC,FG//面PBC,
同理,GE//面PBC,FGGE=点G,面EFG//面PBC,故选①;
 PC面ABC,且FGPC,
FG面ABC, FG面EFG,面EFG面ABC故选②;
又易知EF//BP,故是直线EF与直线PC所成的角,选③
ABC为直角三角形时④选项才正确。
所以选①②③
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

正方体A-C1中,棱长为1,M在棱AB上,AM=1/3,P是面ABCD上的动点,P到线A1D1的距离与P到点M的距离平方差为1,则P点的轨迹以下哪条曲线上? (   ) 
A.圆B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,,侧面为等边三角形,侧棱

(Ⅰ)求证:
(Ⅱ)求证:平面平面
(Ⅲ)求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知三棱锥的四个顶点均在半径为3的球面上,且PAPBPC两两互相垂直,则三棱锥的侧面积的最大值为               

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,三棱锥中,底面
,点,点分别是的中点.

(1) 求证:侧面⊥侧面;
(2) 求点到平面的距离;
(3) 求异面直线所成的角的余弦.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图所示,凸多面体中,平面平面的中点.
(1)求证:平面
(2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图一,平面四边形关于直线对称,
沿折起(如图二),使二面角的余弦值等于.对于图二,
(Ⅰ)求
(Ⅱ)证明:平面
(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在体积为1的三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥AC,AC=AA1=1,P为线段AB上的动点.

(1)求证:CA1⊥C1P;
(2)当AP为何值时,二面角C1-PB1-A1的大小为?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 如图,在三棱锥中,的中点.
(1)求证:
(2)求异面直线所成角的余弦值.

查看答案和解析>>

同步练习册答案