精英家教网 > 高中数学 > 题目详情
5.已知定义在R上的奇函数f(x),当x∈(0,+∞)时的解析式为f(x)=-x2+4x-3.
(1)求这个函数在R上的解析式;
(2)作出f(x)的图象,并根据图象直接写出函数f(x)的单调区间.

分析 (1)根据当x∈(0,+∞)时的解析式,利用奇函数的性质,求得x≤0时函数的解析式,从而得到函数在R上的解析式.
(2)根据函数的解析式、奇函数的性质,作出函数的图象,数形结合可得函数f(x)的单调区间.

解答 解:(1)当x<0时,-x>0,∵f(x)为R上的奇函数,∴f(-x)=-f(x),
∴f(x)=-f(-x)=-[-(-x)2+4(-x)-3]=x2+4x+3,
即x<0时,f(x)=x2+4x+3.
当x=0时,由f(-x)=-f(x)得:f(0)=0,
所以,f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x-3,}&{x>0}\\{0,}&{x=0}\\{{x}^{2}+4x+3,}&{x<0}\end{array}\right.$.       
(2)作出f(x)的图象(如图所示)
数形结合可得函数f(x)的减区间:
(-∞,-2)、(2,+∞);增区间为[-2,0)、(0,2].

点评 本题主要考查利用函数的奇偶性求函数的解析式,作函数的图象,求函数的单调区间,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.用1,2,3,4排成数字不重复的四位数,若已知1、2相邻,则1、3相邻的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若$sinα=-\frac{5}{13},且α$为第四象限角,则$tan({α+\frac{π}{4}})$的值等于(  )
A.$\frac{7}{17}$B.$\frac{17}{7}$C.$-\frac{5}{12}$D.$\frac{10}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图一个几何体的正视图和俯视图如图所示,其中俯视图为边长为2$\sqrt{3}$的正三角形,且圆与三角形内切,则该几何体的体积为$6\sqrt{3}+\frac{4π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数y=2x+1+m的图象不经过第二象限,则m的取值范围是(-∞,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列函数中,值域为(0,+∞)的是(  )
A.y=-5xB.$y={(\frac{1}{3})^{1-x}}$
C.y=x2-2x+3,x∈(-∞,2]D.$y=\frac{1}{x+1},x∈[0,+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.以双曲线$\frac{x^2}{4}-{y^2}=1$的中心为顶点,右焦点为焦点的抛物线方程是(  )
A.y2=4xB.${y^2}=4\sqrt{5}x$C.${y^2}=8\sqrt{5}x$D.${y^2}=\sqrt{5}x$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设△ABC的内角A,B,C所对边的长分别为a,b,c,若a:b:c=1:2:$\sqrt{7}$,则角C=(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=x2在区间[2,3]上的最大值与最小值的差为5.

查看答案和解析>>

同步练习册答案