精英家教网 > 高中数学 > 题目详情
20.若函数y=2x+1+m的图象不经过第二象限,则m的取值范围是(-∞,-2].

分析 函数y=2x+1+m是由指数函数y=2x平移而来的,求出y=2x+1与y轴的交点,根据条件作出其图象,由图象来解.

解答 解:指数函数y=2x+1过点(0,2),函数是增函数,
函数y=2x+1+m过定点(0,2+m)如图所示,
图象不过第二象限则,2+m≤0
∴m≤-2,
故答案为:(-∞,-2]

点评 本题主要考查基本函数的图象变换,通过变换了解原函数与新函数的图象和性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=(2m-1)x${\;}^{{m}^{2}-2}$是幂函数,则 f(-2)=(  )
A.-1B.-2C.1D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$\overrightarrow a=(5,6),\overrightarrow b=(sinα,cosα)$,且$\overrightarrow a∥\overrightarrow b$,则tanα=(  )
A.$-\frac{5}{6}$B.$-\frac{6}{5}$C.$\frac{6}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦点分别为F1(-c,0),F2(c,0).若椭圆上存在点P,使$\frac{{P{F_1}}}{{2P{F_2}}}=\frac{a}{c}$;则该椭圆离心率的范围是$[\frac{{-3+\sqrt{17}}}{2},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=x2-2mx+5在区间[-2,+∞)上是增函数,则m的取值范围是(  )
A.(-∞,-2]B.[-2,+∞)C.(-∞,-1]D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知定义在R上的奇函数f(x),当x∈(0,+∞)时的解析式为f(x)=-x2+4x-3.
(1)求这个函数在R上的解析式;
(2)作出f(x)的图象,并根据图象直接写出函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次是[20,40),[40,60),[60,80),[80,100),若低于60分的人数是15人,则该班的学生人数和平均成绩分别是(  )
A.45,67B.50,68C.55,69D.60,70

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列各式因式分解正确的是(  )
A.$\frac{1}{2}$a2+a+$\frac{1}{2}$=a2+2a+1=(a+1)2B.a2+ab-6b2=a(a+b)-6b2
C.a2-b2-a-b=(a+b)(a-b)-a-bD.a-2a2+a3=a(1-2a+a2)=a(1-a)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x<0}\\{2x,x≥0}\end{array}\right.$,求出这个函数的最值.

查看答案和解析>>

同步练习册答案