精英家教网 > 高中数学 > 题目详情

已知数列{ an}的通项公式是 an=数学公式,其中a、b均为正常数,那么 an与 an+1的大小关系是


  1. A.
    an>an+1
  2. B.
    an<an+1
  3. C.
    an=an+1
  4. D.
    与n的取值有关
B
分析:由函数 t=b 是关于变量n的减函数,可得an= 是关于变量n的增函数,从而得出结论.
解答:∵数列{ an}的通项公式是 an=,其中a、b均为正常数,∴an=
再由函数 t=b 是关于变量n的减函数,
∴an= 是关于变量n的增函数.
∴an<an+1
故选B.
点评:本题主要考查数列的单调性,这里通过转化应用函数的单调性来解决.数列是一类特殊的函数,函数意识要加强,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{
anpn-1
}
的前n项和Sn=n2+2n(其中常数p>0),数列{an}的前n项和为Tn
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求Tn的表达式;
(Ⅲ)若对任意n∈N*,都有(1-p)Tn+pan≥2pn恒成立,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列(an}满足:a1=
1
2
,an+1=
n+1
2n
an,数列{bn}满足nbn=an(n∈N*).
(1)证明数列{bn}是等比数列,并求其通项公式:
(2)求数列{an}的前n项和Sn
(3)在(2)的条件下,若集合{n|
(n2+n)(2-Sn)
n+2
≥λ,n∈N*}=∅.求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列(an}为Sn且有a1=2,3Sn=5an-an-1+3Sn-1 (n≥2)
(I)求数列{an}的通项公式;
(Ⅱ)若bn=(2n-1)an,求数列{bn}前n和Tn
(Ⅲ)若cn=tn[lg(2t)n+lgan+2](0<t<1),且数列{cn}中的每一项总小于它后面的项,求实数t取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{
a
 
n
}
的前n项和为Sn,且向量
a
=(n,Sn)
b
=(4,n+3)
共线.
(Ⅰ)求证:数列{an}是等差数列;
(Ⅱ)求数列{
1
nan
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列数列{an}前n项和Sn=-
1
2
n2+kn
(其中k∈N*),且Sn的最大值为8.
(Ⅰ)确定常数k并求{an}的通项公式;
(Ⅱ)若bn=9-2an,求数列{
1
bnbn+1
}
前n项和Tn

查看答案和解析>>

同步练习册答案