精英家教网 > 高中数学 > 题目详情
9.若直线2x+3y-1=0与直线4x+my+11=0平行,则它们之间的距离为(  )
A.$\frac{{\sqrt{13}}}{2}$B.$\frac{{2\sqrt{13}}}{13}$C.$\frac{{6\sqrt{13}}}{13}$D.$\frac{{12\sqrt{13}}}{13}$

分析 由平行关系可得m的值,再由平行线间的距离公式可得答案.

解答 解:∵直线2x+3y-1=0与直线4x+my+11=0平行,
∴2m=4×3,解得m=6,
∴直线2x+3y-1=0可化为4x+6y-2=0,
由平行线间的距离公式可得d=$\frac{|-2-11|}{\sqrt{{4}^{2}+{6}^{2}}}$=$\frac{\sqrt{13}}{2}$
故选:A

点评 本题考查直线的一般式方程和平行关系,涉及平行线间的距离公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知直线y=kx+1与圆x2+y2-kx-my-5=0交于M,N两点,且M,N关于直线x+y=0对称,若P(a,b)为平面区域$\left\{\begin{array}{l}{kx-my-3≤0}\\{kx-y+1≤0}\\{x≥0}\end{array}\right.$上的任意一点,则$\frac{b+1}{a+1}$的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.袋中有白球2个,红球3个,从中任取两个,则互斥且不对立的两个事件是(  )
A.至少有一个白球;都是白球B.两个白球;至少有一个红球
C.红球、白球各一个;都是白球D.红球、白球各一个;至少有一个白球

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设(2x-1)5=a0+a1(x-1)+a2(x-1)2+…+a5(x-1)5,则a0+a1+a2+…+a5的值为(  )
A.1B.-1C.243D.-243

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.对某次联考数学成绩(百分制)进行分析,如图为分析结果的频率分布直方图.根据标准,成绩分数在区间[50,60)上为不及格,在[60,70)上为一般,在[70,80)上为较好,在[80,90)上为良好,在[90,100]上为优秀.用频率估计概率,若从参考学生中随机抽取1人,则其成绩为优良(优秀或良好)的概率为(  )
A.0.09B.0.20C.0.25D.0.40

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线l:y=(1-m)x+m(m∈R).
(Ⅰ)若直线l的倾斜角$α∈[\frac{π}{4},\frac{π}{3}]$,求实数m的取值范围;
(Ⅱ)若直线l分别与x轴,y轴的正半轴交于A,B两点,O是坐标原点,求△AOB面积的最小值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为$\frac{{x}^{2}}{18}-\frac{{y}^{2}}{18}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)若log67=a,log34=b,求log127的值.
(2)若函数f(x)=lg$\frac{1+{2}^{x}+{3}^{x}a}{3}$在(-∞,1]有意义,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.先后抛掷两枚均匀的骰子,若骰子朝上一面的点数依次为x,y(x,y∈{1,2,3,4,5,6}),则logx(2y-1)>1的概率是$\frac{19}{36}$.

查看答案和解析>>

同步练习册答案