精英家教网 > 高中数学 > 题目详情
4.对某次联考数学成绩(百分制)进行分析,如图为分析结果的频率分布直方图.根据标准,成绩分数在区间[50,60)上为不及格,在[60,70)上为一般,在[70,80)上为较好,在[80,90)上为良好,在[90,100]上为优秀.用频率估计概率,若从参考学生中随机抽取1人,则其成绩为优良(优秀或良好)的概率为(  )
A.0.09B.0.20C.0.25D.0.40

分析 根据题意,求出成绩在[80,100]内的频率即可.

解答 解:根据题意,成绩在[80,100]内的频率为
(0.025+0.015)×10=0.40;
所以,成绩为优良的概率为0.40.
故选:D.

点评 本题考查了用样本的频率估计总体概率的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设函数f′(x)的偶函数f(x)(x∈R且x≠0)的导函数,f(2)=0且当x>0时,xf′(x)-f(x)>0,则使f(x)<0成立的x的取值范围为(  )
A.(-∞,-2)∪(0,2)B.(-2,0)∪(0,2)C.(-2,0)∪(2,+∞)D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,三内角A,B,C对应的边分别为a,b,c,已知A=$\frac{π}{3}$,a=2.
(Ⅰ)求△ABC面积S的最大值;
(Ⅱ)求sinB+cosB的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.学校开设美术、舞蹈、计算机三门选修课,现有四名同学参与选课,且每人限选一门课程,那么不同的选课方法的种数是(  )
A.12B.24C.64D.81

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.(A)设函数f(x)=xcosx-sinx,x∈(0,π),则f(x)的单调性是(  )
A.增函数B.减函数C.先增后减函数D.先减后增函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若直线2x+3y-1=0与直线4x+my+11=0平行,则它们之间的距离为(  )
A.$\frac{{\sqrt{13}}}{2}$B.$\frac{{2\sqrt{13}}}{13}$C.$\frac{{6\sqrt{13}}}{13}$D.$\frac{{12\sqrt{13}}}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1到160编号,按编号顺序平均分成20段(1~8号,9~16号,…,153~160号).若第16段应抽出的号码为125,则第1段中用简单随机抽样确定的号码是5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.与双曲线x2-$\frac{y^2}{4}$=1有共同的渐近线,且过点(2,2)的双曲线方程为(  )
A.$\frac{x^2}{2}$-$\frac{y^2}{8}$=1B.$\frac{x^2}{3}$-$\frac{y^2}{12}$=1C.$\frac{y^2}{3}$-$\frac{x^2}{12}$=1D.$\frac{y^2}{2}$-$\frac{x^2}{8}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$是两个不共线的向量.
(1)求证:|$\overrightarrow{a}•\overrightarrow{b}$|≤|$\overrightarrow{a}$||$\overrightarrow{b}$|;
(2)应用(1)的结论求函数y=$\frac{1+sinx}{2-cosx}$的最大值.(注:第2小题未用向量法不给分,要用到向量数量积相关概念)

查看答案和解析>>

同步练习册答案