精英家教网 > 高中数学 > 题目详情
1.设变量x,y满足|x-a|+|y-a|≤1,若2x-y的最大值是5,则实数a的值为3.

分析 满足条件的点(x,y)构成趋于为平行四边形及其内部区域,令z=2x-y,显然当直线y=2x-z过点C(1+a,a)时,z取得最大值为5,即2(1+a)-a=5,由此求得a的值.

解答 解:设点M(a,a)
则满足|x-a|+|y-a|≤1的点(x,y)
构成区域为平行四边形及其内部区域,如图所示:
令z=2x-y,则z表示直线y=2x-z在y轴上的截距的相反数,
故当直线y=2x-z过点C(1+a,a)时,z取得最大值为5,
即2(1+a)-a=5,解得a=3.
故答案为:3.

点评 本题主要考查绝对值三角不等式、简单的线性规划问题,体现了转化、数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设n=${∫}_{0}^{2}$3x2dx,则(x-$\frac{1}{2x}$)n的展开式中的常数项为(  )
A.-$\frac{35}{8}$B.$\frac{35}{8}$C.-70D.70

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列各组向量中可以作为基底的是(  )
A.$\overrightarrow{a}$=(0,0),$\overrightarrow{b}$=(1,-2)B.$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(3,4)C.$\overrightarrow{a}$=(3,5),$\overrightarrow{b}$=(6,10)D.$\overrightarrow{a}$=(2,-3),$\overrightarrow{b}$=(-2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,在几何体ABCDE中,△ABC是等腰直角三角形,∠ACB=90°,四边形ACED是直角梯形,∠DAC=90°,AD∥CE,AD=AC=2CE=2,BC⊥CE,点F是AB的中点.
(1)求证:CF∥平面BDE;
(2)若$\overrightarrow{BG}$=λ$\overrightarrow{BD}$,AG和平面BDE所成的角的余弦值是$\frac{1}{3}$,试确定点G的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某城市要求节约用水,作出如下规定:每户家庭每月用水超过15立方米,按0.4元/立方米收费;若超过15立方米,不超过20立方米,超过部分按2元/立方米收费;若超过20立方米,则停止供水.
(1)试写出一户家庭所交水费y(元)与用水量x(立方米)之间的关系;
(2)若该用户当月用水量按0.5元/立方米来收费,求该用户当月的用水量.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图细图所示,则该几何体的体积为(  )
A.12B.13C.18D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.证明:设三角形的外接圆的半径是R,则
a=2RsinA,b=2RsinB,c=2RsinC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知向量$\overrightarrow{a}$=(-2,1),$\overrightarrow{b}$=(1,-1),$\overrightarrow{m}$=$\overrightarrow{a}$+3$\overrightarrow{b}$,$\overrightarrow{n}$=$\overrightarrow{a}$-k$\overrightarrow{b}$.
(1)若$\overrightarrow{n}$⊥$\overrightarrow{a}$,求k的值;
(2)当k=2时,求$\overrightarrow{m}$与$\overrightarrow{n}$夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.两个等差数列{an}和{bn},它们的前n项和分别为Sn和Tn,若$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n+5}{3n-2}$,则$\frac{{a}_{5}+{a}_{6}+{a}_{7}}{{b}_{5}+{b}_{6}+{b}_{7}}$=$\frac{27}{31}$.

查看答案和解析>>

同步练习册答案