精英家教网 > 高中数学 > 题目详情
(本小题满分12分)如图,直三棱柱中,分别为的中点,,二面角的大小为.

(Ⅰ)证明:
(Ⅱ)求与平面所成的角的大小.
(1)见解析;(2).
本试题主要是考查了线面角的求解,以及线面平行的判定定理的运用。
(1)利用线面平行的判定定理,先确定线线平行,然后利用定理得到。
((2)建立空间直角坐标系,然后表示出点的坐标,利用法向量和斜向量来得到线面角的求解的综合运用。






练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中,侧棱底面,的中点,,.

(1)求证:平面
(2) 求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥A-BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面是正三角形

(1)求证:AD^BC
(2)求二面角B-AC-D的大小
(3)在直线AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定E的位置;若 
不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

、经过空间一点作与直线角的直线共有(  )条    
A.0B.1C.2D.无数

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知球的半径为,球内接圆锥的高为,体积为
 
(1)写出以表示的函数关系式
(2)当为何值时,有最大值,并求出该最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD-A1B1C1D1中,点M、N分别在AB1、BC1上,且AM=AB1,BN=BC1,则下列结论:①AA1⊥MN;②A1C1// MN;③MN//平面A1B1C1D1;④B1D1⊥MN,其中,
正确命题的个数是( )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中底面ABCD为矩形,PD⊥底面ABCD,AD=PD=1,AB=BC,E、F分别为CD、PB的中点。

(1)求证:EF⊥平面PAB;
(2)求三棱锥P-AEF的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体中,侧面内有一动点到直线与直线的距离相等,则动点的轨迹为一段 (  )
A.圆弧B.双曲线弧C.椭圆弧D.抛物线弧

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,半径为的半球的底面圆在平面内,过点作平面的垂线交半球面于点,过圆的直径作平面角的平面与半球面相交,所得交线上到平面的距离最大的点为,该交线上的一点满足,则两点间的球面距离为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案