精英家教网 > 高中数学 > 题目详情
在正方体ABCD-A1B1C1D1中,点M、N分别在AB1、BC1上,且AM=AB1,BN=BC1,则下列结论:①AA1⊥MN;②A1C1// MN;③MN//平面A1B1C1D1;④B1D1⊥MN,其中,
正确命题的个数是( )
A.1B.2C.3D.4
B
解;在正方体ABCD-A1B1C1D1的四条棱A1A,B1B,C1C,D1D上分别取点G,F,E,H四点,
使AG= A1A,BF=B1B,CE=C1C,DH= D1D,连接GF,FE,EH,HG,
∵点M、N分别在AB1、BC1上,且AM=AB1,BN= BC1
∴M在线段GF上,N点在线段FE上.且四边形GFEH为正方形,平面GFEH∥平面A1B1C1D1
∵AA1⊥平面A1B1C1D1,∴AA1⊥平面GFEH,∵MN?平面GFEH,∴AA1⊥MN,∴①正确.
∵A1C1∥GE,而GE与MN不平行,∴A1C1与MN不平行,∴②错误.
∵平面GFEH∥平面A1B1C1D1,MN?平面GFEH,∴MN∥平面A1B1C1D1,∴③正确.
∵B1D1⊥FH,FH?平面GFEH,MN?平面GFEH,B1D1?平面A1B1C1D1,平面GFEH∥平面A1B1C1D1
且MN与FH不平行,∴B1D1不可能垂直于MN,∴④错误
∴正确命题只有①③
故选B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在如图所示的空间几何体中,平面平面
=,和平面所成的角为,且点在平面上的射影落在的平分线上.

(I)求证:平面
(II)求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,直三棱柱中,分别为的中点,,二面角的大小为.

(Ⅰ)证明:
(Ⅱ)求与平面所成的角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥的底面是正方形,⊥底面上的任意一点。

(1)求证:平面
(2)设,求点到平面的距离
(3)求的值为多少时,二面角的大小为120°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四面体 中,,且分别是的中点。
求证:(1)直线EF ∥面ACD ;(2)面EFC⊥面BCD .                     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知A、B、C三点在球心为,半径为3的球面上,且三棱锥—ABC为正四面体,那么A、B两点间的球面距离为
A、   B、   C、 D、

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1, E, F,G分别是边长为2的正方形所ABCD所在边的中点,沿EF将ΔCEF截去后,又沿EG将多边形ABEFD折起,使得平面DGEF丄平面ABEG得到如图2所示的多面体.

(1) 求证:FG丄平面BEF;
(2) 求二面角A-BF-E的大小;
(3) 求多面体ADG—BFE的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

长方体ABCD-A1B1C1D1中,∠BAB1 =30°,则异面直线C1D与B1B所成的角是
A.60°B.90°
C.30° D.45°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三棱锥的所有顶点都在球的求面上,是边长为的正三角形,为球的直径,且;则此棱锥的体积为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案