精英家教网 > 高中数学 > 题目详情
已知A、B、C三点在球心为,半径为3的球面上,且三棱锥—ABC为正四面体,那么A、B两点间的球面距离为
A、   B、   C、 D、
D
解:作出图形,

∵几何体O-ABC为正四面体,
∴球心角∠AOB=∴A,B两点的球面距离=×3=π.
故填D
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,多面体EF﹣ABCD中,底面ABCD为等腰梯形,AB∥CD,四边形ACFE为矩形,且平面ACFE⊥平面ABCD,AD=DC=BC=CF=1,AC⊥BC,∠ADC=120°
(1)求证:BC⊥AF
(2)求平面BDF与平面CDF所成夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中,侧棱底面,的中点,,.

(1)求证:平面
(2) 求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在边长为的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥.
(I)判别MN与平面AEF的位置关系,并给出证明;
(II)求多面体E-AFMN的体积.
                 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方形SG1G2G3中,E、F分别是G1G2、G2G3的中点,现沿SE、SF、EF把这个正方形折成一个四面体,使G1、G2、G3重合为点G,则有(  )
A.SG⊥面EFGB.EG⊥面SEF
C.GF⊥面SEFD.SG⊥面SEF

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若a,b是异面直线,且a∥平面α,则b和α的位置关系是(    ) 
A.平行B.相交
C.b在α内D.平行、相交或b在α内

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知球的半径为,球内接圆锥的高为,体积为
 
(1)写出以表示的函数关系式
(2)当为何值时,有最大值,并求出该最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间三条直线,如果其中一条直线和其它两条直线都相交,则这三条直线能确定平面的个数是(   )
A.1个或3个B.2个或3个C.1个或2个或3个D.1个或2个或3个或4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD-A1B1C1D1中,点M、N分别在AB1、BC1上,且AM=AB1,BN=BC1,则下列结论:①AA1⊥MN;②A1C1// MN;③MN//平面A1B1C1D1;④B1D1⊥MN,其中,
正确命题的个数是( )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案