精英家教网 > 高中数学 > 题目详情
例6.(1)是否存在实数m,使得2x+m<0是x2-2x-3>0的充分条件?
(2)是否存在实数m,使得2x+m<0是x2-2x-3>0的必要条件?
(1)欲使得2x+m<0是x2-2x-3>0的充分条件,
则只要{x|x<-
m
2
}⊆{x|x<-1
或x>3},
则只要-
m
2
≤-1

即m≥2,
故存在实数m≥2时,
使2x+m<0是x2-2x-3>0的充分条件.
(2)欲使2x+m<0是x2-2x-3>0的必要条件,
则只要{x|x<-
m
2
}?{x|x<-1
或x>3},
则这是不可能的,
故不存在实数m时,
使2x+m<0是x2-2x-3>0的必要条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

已知点是直角坐标平面内的动点,点到直线的距离为,到点的距离为,且.

(1)求动点P所在曲线C的方程;

(2)直线过点F且与曲线C交于不同两点AB(点AB不在x轴上),分别过AB点作直线的垂线,对应的垂足分别为,试判断点F与以线段为直径的圆的位置关系(指在圆内、圆上、圆外等情况);

(3)记,,(AB、是(2)中的点),问是否存在实数,使成立.若存在,求出的值;若不存在,请说明理由.

进一步思考问题:若上述问题中直线、点、曲线C:,则使等式成立的的值仍保持不变.请给出你的判断            (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

已知点是直角坐标平面内的动点,点到直线的距离为,到点的距离为,且.

(1)求动点P所在曲线C的方程;

(2)直线过点F且与曲线C交于不同两点AB(点AB不在x轴上),分别过AB点作直线的垂线,对应的垂足分别为,试判断点F与以线段为直径的圆的位置关系(指在圆内、圆上、圆外等情况);

(3)记,,(AB、是(2)中的点),问是否存在实数,使成立.若存在,求出的值;若不存在,请说明理由.

进一步思考问题:若上述问题中直线、点、曲线C:,则使等式成立的的值仍保持不变.请给出你的判断            (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).

查看答案和解析>>

科目:高中数学 来源:高考数学一轮复习必备(第06课时):第一章 集合与简易逻辑-充要条件(解析版) 题型:解答题

例6.(1)是否存在实数m,使得2x+m<0是x2-2x-3>0的充分条件?
(2)是否存在实数m,使得2x+m<0是x2-2x-3>0的必要条件?

查看答案和解析>>

同步练习册答案