精英家教网 > 高中数学 > 题目详情
(2013•乌鲁木齐一模)已知函数f(x)=
lnxa
-x

(I)若曲线y=f(x)在点(1,f(1))处的切线与X轴平行,求函数f(x)的单调区间;
(II)若对一切正数x,都有f(x)≤-1恒成立,求a的取值集合.
分析:(I)求导数f′(x)=
1
ax
-1,据题意k=f′(1)=0,解得a值,再在定义域内解不等式f′(x)>0,f′(x)<0即可;
(II)分a<0,a>0两种情况讨论:a<0时易判断不成立;a>0时,转化为f(x)的最大值小于等于-1,构造函数可判断a的取值范围;
解答:(Ⅰ)∵f′(x)=
1
ax
-1,
∴曲线y=f(x)在点(1,f(1))处的切线斜率为k=f′(1)=
1
a
-1,
依题意
1
a
-1=0,解得a=1,
∴f(x)=lnx-x,f′(x)=
1
x
-1,
当0<x<1时,f′(x)>0,函数f(x)单调递增;当x>1时,f′(x)<0,函数f(x) 单调递减;
所以函数f(x)的单调增区间为(0,1),减区间为(1,+∞);      
(Ⅱ)若a<0,因为此时对一切x∈(0,1),都有
lnx
a
>0,x-1<0,所以
lnx
a
>x-1,与题意矛盾,
又a≠0,故a>0,由f′(x)=
1
ax
-1,令f′(x)=0,得x=
1
a

当0<x<
1
a
时,f′(x)>0,函数f(x)单调递增;当x>
1
a
时,f′(x)<0,函数f(x) 单调递减;
所以f(x)在x=
1
a
处取得最大值
1
a
ln
1
a
-
1
a

故对?x∈R+,f(x)≤-1恒成立,当且仅当对?a∈R+
1
a
ln
1
a
-
1
a
≤-1恒成立.
1
a
=t,g(t)=tlnt-t,t>0.则g′(t)=lnt,
当0<t<1时,g′(t)<0,函数g(t)单调递减;当t>1时,g′(t)>0,函数g(t)单调递增;
所以g(t)在t=1处取得最小值-1,
因此,当且仅当
1
a
=1,即a=1时,
1
a
ln
1
a
-
1
a
≤-1成立.
故a的取值集合为{1}.
点评:本题考查利用导数研究函数单调性、曲线上某点切线方程,考查函数的最值求解,考查分类讨论思想,考查函数恒成立问题的解决,转化函数最值是解决恒成立问题的常用方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•乌鲁木齐一模)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如表),由最小二乘法求得回归方程
y
=0.67x+54.9


现发现表中有一个数据模糊看不清,请你推断出该数据的值为
68
68

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乌鲁木齐一模)函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分图象如图所示,其 中A,B两点之间的距离为5,则f(x)的递增区间是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乌鲁木齐一模)已知集合A={x|x>1},B={x|x<m},且A∪B=R,那么m的值可以是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乌鲁木齐一模)设平面区域D是由双曲线y2-
x24
=1
的两条渐近线和抛物线y2=-8x的准线所围成的三角形(含边界与内部).若点(x,y)∈D,则目标函数z=x+y的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乌鲁木齐一模)“a>0”是“a2<a”的(  )

查看答案和解析>>

同步练习册答案