精英家教网 > 高中数学 > 题目详情
如图,已知等边△ABC的边长为2,D为AC的中点,且△ADE也是等边三角形.在△ADE以点A为中心向下转动到稳定位置的过程中,
BD
CE
的取值范围是
 
考点:平面向量数量积的运算
专题:计算题,平面向量及应用
分析:设∠BAD=θ,(0≤θ≤
π
3
),则∠CAE=θ,则
BD
CE
=(
AD
-
AB
)•(
AE
-
AC
),将其展开,运用向量的数量积的定义,再由两角和差的余弦公式,化简得到
5
2
-2cosθ,再由余弦函数的性质,即可得到范围.
解答: 解:设∠BAD=θ,(0≤θ≤
π
3
),
则∠CAE=θ,
BD
CE
=(
AD
-
AB
)•(
AE
-
AC

=
AD
AE
-
AD
AC
-
AB
AE
+
AB
AC

=1×1×cos
π
3
-1×2×cos(
π
3
)-2×1×cos(
π
3
)+2×2×cos
π
3

=
5
2
-2(
1
2
cosθ+
3
2
sinθ+
1
2
cosθ-
3
2
sinθ)=
5
2
-2cosθ,
由于0≤θ≤
π
3
,则
1
2
≤cosθ≤1,
1
2
5
2
-2cosθ≤
3
2

故答案为:[
1
2
3
2
].
点评:本题考查平面向量的数量积的定义,考查三角函数的化简和求最值,考查运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

顶点在坐标原点,对称轴为坐标轴且经过点(-2,3)的抛物线方程是(  )
A、y2=
9
4
x
B、x2=
4
3
y
C、y2=-
9
4
x或x2=-
4
3
y
D、y2=-
9
2
x或x2=
4
3
y

查看答案和解析>>

科目:高中数学 来源: 题型:

OA
=(-2,m),
OB
=(n,1),
OC
=(5,-1),若A、B、C三点共线,且
OA
OB
,则m+n的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知λ1>0,λ2>0,
e1
e2
是一组基底,且
a
=λ1
e1
+λ2
e2
,则
a
e1
 
a
e2
 
(填共线或不共线).

查看答案和解析>>

科目:高中数学 来源: 题型:

把函数y=sin(2x-
π
4
)的图象向左平移
π
6
个单位,所得图象的函数解析式是(  )
A、y=sin(2x-
12
B、y=sin(2x-
π
12
C、y=sin(2x-
12
D、y=sin(2x+
π
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,直线y=
3
3
x+4与以原点为圆心,短半轴长为半径的圆相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)过左焦点F1作不与x轴垂直的直线l,与椭圆交于A,B两点,点M(m,0)满足(
MA
-
MB
)•(
MA
+
MB
)=0,问
|
MA
-
MB
|
|
MF1
|
是否为定值,若是,求出此定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义域为R的函数f(x)=
4x-a
x2+1
(a为实常数).
(1)若f(1)=
1
2
,求a的值;
(2)当a取(1)中所确定的值,求f(x)的值域;
(3)若f(x)值域为[-1,4],求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:不等式|x-2|+|x+m|>5的解集为R,命题q:函数f(x)=-(5-2m)x是减函数,若p或q为真,p且q为假,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于命题“正方形的四个内角相等”,下面判断正确的是(  )
A、所给命题为假
B、它的逆否命题为真
C、它的逆命题为真
D、它的否命题为真

查看答案和解析>>

同步练习册答案