精英家教网 > 高中数学 > 题目详情
2.已知α∈($\frac{3}{2}$π,2π),sinα=-$\frac{15}{17}$,求角α的其他三角函数值.

分析 直接利用同角三角函数的基本关系式,求解角α的其他三角函数值即可.

解答 解:α∈($\frac{3}{2}$π,2π)是第四象限角,sinα=-$\frac{15}{17}$,
可得cosα=$\sqrt{1-{sin}^{2}α}$=$\frac{8}{17}$.
tanα=$\frac{sinα}{cosα}$=$-\frac{15}{8}$.

点评 本题考查同角三角函数的基本关系式的应用,考查计算能力,注意角所在象限.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.下列各函数模型中,为指数增长模型的是(  )
A.y=0.7×1.09xB.y=100×0.95xC.y=0.5×0.35xD.y=2×($\frac{2}{3}$)x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合A={x|x2-2x-3≤0.x∈R},B={m-1≤x≤5-m,m∈R}
(1)若A∩B={x|0≤x≤3},求实数m的值;
(2)若A⊆∁RB,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,|$\overrightarrow{a}$+$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(t)=t+$\frac{1}{t}$,则
(1)f(t)=t+$\frac{1}{t}$在[$\frac{1}{3}$,1]内的最大值和最小值分别是多少?
(2)f(t)=t+$\frac{1}{t}$在[$\frac{1}{3}$,4]内的最大值和最小值分别是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列函数的值域.
(1)y=3-2sin2x;
(2)y=|sinx|+sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若x∈[-$\frac{π}{3}$,$\frac{π}{4}$],求函数y=$\frac{1}{co{s}^{2}x}$+2tanx+1的最值及相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知sin75°=$\frac{\sqrt{6}-\sqrt{2}}{4}$,求cos15°,cos165°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.甲、乙两袋装有大小相同的红球和白球,其中甲袋装有1个红球,4个白球;乙袋装有2个红球,3个白球.现从甲、乙两袋中各任取2个球.
(Ⅰ)用ξ表示取到的4个球中红球的个数,求ξ的分布列及ξ的数学期望;
(Ⅱ)求取到的4个球中至少有2个红球的概率.

查看答案和解析>>

同步练习册答案