精英家教网 > 高中数学 > 题目详情
6.设a,b,c∈R,则下列命题为真命题的是(  )
A.a>b⇒a-c>b-cB.a>b⇒ac>bcC.a>b⇒a2>b2D.a>b⇒ac2>bc2

分析 A,由不等式的性质:在不等式两边同时加(减)同一个数,不等式方向不改变,可判断;
对于B,不等式的性质:在不等式两边同时乘(除)同一个正数,不等式方向不改变,可判断;
C,a>b>0⇒a2>b2
D,a>b⇒ac2≥bc2

解答 解:对于A,由不等式的性质:在不等式两边同时加(减)同一个数,不等式方向不改变,判断A为真命题;
对于B,不等式的性质:在不等式两边同时乘(除)同一个正数,不等式方向不改变,判断B为假命题;
对于C,a>b>0⇒a2>b2,故C为假命题;
对于D,a>b⇒ac2≥bc2,故D为假命题;
故选:A.

点评 本题考查了不等式的基本性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+\sqrt{2}cosθ}\\{y=1+\sqrt{2}sinθ}\end{array}\right.$,以坐标原点为极点,以x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρsin(θ+$\frac{π}{4}$)+$\sqrt{2}$=0.
(1)求曲线C1的极坐标方程以及曲线C2的直角坐标方程;
(2)求曲线C1上的点到曲线C2的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若双曲线$\frac{x^2}{|m|}-\frac{y^2}{|m|+3}=1$的焦距为$2\sqrt{5}$,则该双曲线经过一、三象限的渐近线方程为2x-y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若$\frac{cos(π-2α)}{sin(α-\frac{π}{4})}$=-$\frac{\sqrt{2}}{2}$,则sin2α=$-\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(x2-ax-a)ex
(1)当a=1时,求f(x)的单调区间;
(2)若a∈(0,2),对于任意x1,x2∈[-4,0],都有|f(x1)-f(x2)|<(6e-2+2)•m恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某公共汽车站,每隔15分钟有一辆车出发,并且出发前在车站停靠3分钟,则某人随机到达该站的候车时间不超过10分钟的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{15}$C.$\frac{13}{15}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若以双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{4}$=1(a>0)的左、右焦点和点(2,1)为顶点的三角形为直角三角形,则此双曲线的实轴长为(  )
A.1B.2C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若定义在R上的函数f(x)满足f(x)=-f(x+$\frac{3}{2}$),且f(1)=1,则f(2017)等于(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=2x+$\frac{1}{4}$x-5在区间(n,n+1)(n∈N+)内有零点,则n=2.

查看答案和解析>>

同步练习册答案