精英家教网 > 高中数学 > 题目详情
16.在区间[0,1]上随机取两个数x,y,记P为事件“x+y≤$\frac{2}{3}$”的概率,则P=(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{4}{9}$D.$\frac{2}{9}$

分析 由题意可得总的基本事件为{(x,y)|0≤x≤1,0≤y≤1},事件P包含的基本事件为{(x,y)|0≤x≤1,0≤y≤1,x+y≤$\frac{2}{3}$},数形结合可得.

解答 解:由题意可得总的基本事件为{(x,y)|0≤x≤1,0≤y≤1},
事件P包含的基本事件为{(x,y)|0≤x≤1,0≤y≤1,x+y≤$\frac{2}{3}$},
它们所对应的区域分别为图中的正方形和阴影三角形,
故所求概率P=$\frac{\frac{1}{2}×\frac{2}{3}×\frac{2}{3}}{1×1}$=$\frac{2}{9}$,
故选:D.

点评 本题考查几何概型,数形结合是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.“x<-1”是“x2-1>0成立的(  )条件.
A.充分而不必要B.必要而不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在数列{an}中,Sn=2n2-13n+1(n∈N),求a9的值和{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.空间四边形ABCD中,AB、BC、CD的中点是P、Q、R,PQ=3,QR=4,PR=5,那么异面直线AC、BD所成的角是(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=tan(ax+$\frac{π}{6}$)(a≠0)的最小正周期为$\frac{π}{|a|}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=|2+xi|(x∈R)(i为虚数单位>与函数y=a有且仅有一个交点,则实数a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某人投篮一次投不中的概率是$\frac{1}{3}$,设投篮5次投中、投不中的次数分别是ξ、η,则事件“ξ<η”的概率为(  )
A.$\frac{11}{81}$B.$\frac{13}{81}$C.$\frac{15}{81}$D.$\frac{17}{81}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,∠A=120°,2sin(B-C)=3cosBsinC,求$\frac{AC}{AB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的各项均为正数,满足a1=1,ak+1-ak=ai.(i≤k,k=1,2,3,…,n-1)
(Ⅰ)求证:${a_{k+1}}-{a_k}≥1\begin{array}{l}{\;}{(k=1,2,3,…,n-1)}\end{array}$;
(Ⅱ)若{an}是等比数列,求数列{an}的通项公式;
(Ⅲ)设数列{an}的前n项和为Sn,求证:$\frac{1}{2}n(n+1)≤{S_n}≤{2^n}-1$.

查看答案和解析>>

同步练习册答案